eesti teaduste
akadeemia kirjastus
SINCE 1952
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

Sedimentary record of heavy metals in Lake Rõuge Liinjärv, southern Estonia; 221–232

Full article in PDF format | doi:10.3176/earth.2007.03

Viia Lepane, Mart Varvas, Anu Viitak, Tiiu Alliksaar, Atko Heinsalu

Anthropogenic impact on Lake Liinjärv (Rõuge, southern Estonia) was studied back to the mid-19th century on the basis of heavy metals (Pb, Cu, Zn, Mn, and Hg) and geochemical parameters of a short sediment core dated by 210Pb isotopes. The development of the lake and its sediment composition are heavily influenced by the inflow of saturated calcareous waters that cause precipitation of calcium carbonates. The concentrations of most of the metals started to increase at the end of the 1970s. This is most clearly observable for Zn, Cu, and Pb. At the same time the distribution pattern of Mn seems to be controlled mainly by the redox conditions in the hypolimneon. The main sources of pollutants in Lake Liinjärv, due to its large catchment area, are the influence of agricultural activity and atmospheric input. Organic matter is the main factor affecting heavy metal (Pb, Hg, Cu, and Zn) distribution in lake sediments.

Appleby, P. G. & Oldfield, F. 1978. The concentration of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, 5, 1–8.

Boudreau, B. P. 1999. Metals and models: diagenic modelling in freshwater lacustrine sediments. Journal of Paleolimnology, 22, 227-251.

Bowen, H. & Moule, J. 1979. Environmental Chemistry of the Elements. Academic Press,London, 333 pp.

Boyle, J. F. 2001. Inorganic geochemical methods in paleolimnology. In Tracking Environmental Change Using Lake Sediments, Volume 2: Physical and Geochemical Methods (Last, W. M. & Smol, J. P., eds), pp. 83–142. Kluwer Academic Publishers, Dordrecht.

Canavan, R. W., Van Cappellen, P., Zwolsman, J. J. G., van den Berg, G. A. & Slomp, C. P. 2007. Geochemistry of trace metals in a fresh water sediment: field results and diagenetic modelling. Science of Total Environment, 381, 263–279.

Di Toro, D. M., Mahony, J. D., Hansen, D. J. & Berry, W. J. 1996. A model of the oxidation of iron and cadmium sulfide in sediments. Environmental Toxicology and Chemistry, 15, 2168–2186.

Durham, R. W. & Joshi, S. R. 1980. Recent sedimentation rates, 210Pb fluxes and particle setting velocities in Lake Huron, Laurentian Great Lakes. Chemical Geology, 31, 53–66.

Eakins, J. D. & Morrison, R. T. 1978. A new procedure for the determination of lead-210 in lake and marine sediments. International Journal of Applied Radiation and Isotopes, 29, 531–536.

Glew, J. R., Smol, J. P. & Last, W. M. 2001. Sediment core collection and extrusion. In Tracking Environmental Change Using Lake Sediments, Volume 1: Basin Analysis, Coring, and Chronological Techniques (Last, W. M. & Smol, J. P., eds), pp. 73–106. Kluwer Academic Publishers, Dordrecht.

Gobeil, C. & Silverberg, N. 1989. Early diagenesis of lead in Laurentian Tough sediments. Geochimica et Cosmochimica Acta, 53, 1889–1895.

Håkansson, L. & Jansson, M. 1983. Principles of Lake Sedimentology. Springer-Verlag, Berlin, 318 pp.

Heinsalu, A. & Veski, S. 2007. Lõuna-Eesti väikejärvede pärastjääaegsest arenguloost Rõuge Tõugjärve näitel [Post-glacial development of small lakes in South Estonia on the example of Lake Rõuge Tõugjärv]. In Eesti Loodusuurijate Seltsi järve­komisjon 100 aastat. Tähtpäevaettekannete kogumik (Timm, H., Paju, M.-M. & Sammul, M., eds), pp. 43–48. Sulemees, Tartu [in Estonian].

Heiri, O., Lotter, A. F. & Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sedi­ments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.

Hödrejärv, H. & Ott, R. 1988. Heavy metals in the environment of Estonia. Transactions of Tallinn Technical University, 73–83.

Hödrejärv, H., Ott, R., Lepane, V. & Vaarmann, A. 1989. Heavy metals in Lake Peipsi. Proceedings of the Academy of Sciences of the Estonian SSR, Biology, 38, 137–144.

Huerta-Diaz, M. A., Tessier, A. & Carignan, R. 1998. Geochemistry of trace metals associated with reduced sulfur in fresh­water sediments. Applied Geochemistry, 13, 213–233.

Krumgalz, B. S. & Fainshtein, G. 1989. Trace metal contents in certified reference sediments determined by nitric acid digestion and atomic absorption spectrometry. Analytica Chimica Acta, 218, 335–340.

Lepane, V. 1992. Physico-chemical Methods of the Determination of Heavy Metals in Natural Waters and Sediments. Master Thesis. Tallinn University of Technology, Tallinn, 99 pp.

Lõokene, E. 1968. Allikalubja levik ja iseloom Haanja kõrgustikul [Distribution and character of travertine on the Haanja Heights]. Tartu Ülikooli Toimetised, 213, 3-33 [in Estonian].

Mäemets, A. 1977. Eesti NSV järved ja nende kaitse [Estonian lakes and their protection]. Valgus, Tallinn, 263 pp. [in Estonian].

Meili, M. 1995. Pre-industrial atmospheric deposition of mercury: uncertain rates from sediment and peat cores. Water, Air and Soil Pollution, 80, 637–640.

Nriagu, J. O. & Pacyna, J. M. 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134-139.

Ott, R. 1986. Heavy metals in Baltic Sea sediments. Transactions of Tallinn Technical University, 619, 57–63.

Perry, E., Norton, S. A., Kamman, N. C., Lorey, P. M. & Driscoll, C. T. 2005. Deconstruction of historic mercury accumulation in lake sediments, Northeastern United States. Ecotoxicology, 14, 85–99.

Renberg, I., Wik-Persson, M. & Emteryd, O. 1994. Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature, 386, 323-326.

Riikoja, H. 1930. Zur Morphometrie einiger Seen Eestis. Tartu Ülikooli Eesti veekogude uurimise komisjoni väljaanne Nr. 13, Tartu.

Robbins, J. A., Krezoski, J. R. & Mozley, S. C. 1977. Radioactivity in the sediments of Great Lakes: post-depositional redistribution by deposit-feeding organisms. Earth and Planetary Science Letters, 36, 325–333.

Rõuk, M. 1992. Laminated sediments in Estonian lakes - preliminary data. In Laminated Sediments. Proceedings of the Workshop at Lammi Biological Station, 4-6 June, 1990 (Saarnisto, M. & Kahra, A., eds), Geological Survey of Finland, Special Paper, 14, 105-107.

Saarnisto, M. 1986. Annually laminated lake sediments. In Handbook of Holocene Palaeoecology and Palaeohydrology (Berglund, B. E., ed.), pp. 343-370. John Wiley and Sons, Chichester.

Santschi, P., Höhener, P., Benoit, G. & Brink, M. 1990. Chemical processes at the sediment–water interface. Marine Chemistry, 30, 269–315.

Tessier, A. 1992. Sorption of trace elements on natural particles in oxic environments. In Environmental Particles(Buffle, J. & van Leeuwen, H. P., eds), pp. 425–453. Lewis Publishers, Chelsea.

Veski, S., Koppel, K. & Poska, A. 2005. Integrated palaeoecological and historical data in the service of fine-resolution land use and ecological change assessment during the last 1000 years in Rõuge, S Estonia. Journal of Biogeography, 32, 1473–1488.

Von Gunten, H. R., Sturm, M. & Moser, R. N. 1997. 200-year record of metals in lake sediments and natural background concentrations. Environmental Science and Technology, 31, 2193–2197.

Yang, H. & Rose, N. 2005. Trace element pollution records in some UK lake sediments, their history, influence factors and regional differences. Environment International, 31, 63–75.

Yin, X., Liu, X., Sun, L., Zhu, R., Xie, Z. & Wang, Y. 2006. A 1500-year record of lead, copper, arsenic, cadmium, zinc level in Antarctic seal hairs and sediments. Science of Total Environment, 371, 252–257.


Back to Issue