eesti teaduste
akadeemia kirjastus
SINCE 1952
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2021): 0.811
Refraction may redirect waves from multiple directions into a harbour: a case study in the Gulf of Riga, eastern Baltic Sea; pp. 80–88
PDF | 10.3176/earth.2022.06

Rain Männikus, Tarmo Soomere, Fatemeh Najafzadeh

We analyse the impact of bathymetry on the propagation direction of wind waves near the Port of Ringsu on the island of Ruhnu in the central part of the Gulf of Riga (Gulf of Livonia). Waves propagating towards this port are systematically redirected by underwater features. On most occasions the main direction of the refracted saturated wave fields is towards the harbour entrance. This shows that the port entrance needs a complicated set of breakwaters to cope with wind generated waves from most directions.



Baltic Sea Hydrographic Commission. 2013. Baltic Sea Bathymetry Database Version 0.9.3. legal (accessed 2121-04-01).

Battjes, J. A. and Janssen, J. P. F. M. 1978. Energy loss and set-up due to breaking of random waves. In Proceedings of the 16th International Conference on Coastal Engineering, Hamburg, Germany, August 27 – September 3, 1978. American Society of Civil Engineers, 569–587.

Björkqvist, J.-V., Lukas, I., Alari, V., van Vledder, G. Ph., Hulst, S., Pettersson, H., Behrens, A. and Männik A. 2018. Comparing a 41-year model hindcast with decades of wave measurements from the Baltic Sea. Ocean Engineering152, 57–71.

Booij, N., Ris, R. C. and Holthuijsen, L. H. 1999. A third-generation wave model for coastal regions: 1. model description and validation. Journal of Geophysical Research  Oceans104(C4), 7649–7666.

Cairns, A., Carel, J. M. and Li, X. 2016. Port and harbor design. In Springer Handbook of Ocean Engineering (Dhanak, M. R. and Xiros, N. I., eds). Springer, Cham, 685–710.

Cox, J. C. and Czlapinski, R. E. 2016. Engineering of an island-style breakwater system for the Fort Pierce marina. Proceedings of the Institution of Civil Engineers – Maritime Engineering169(1), 37–43.

Davis, J., Phillips, J., Czlapinski, R., Seissiger, E. and Cignarella, P. 2013. Breakwater island creation: A 3-fold system. In Design and Practice of Geosynthetic-Reinforced Soil Structures. International Symposium on Design and Practice of Geosynthetic-Reinforced Soil Structures / 26th Italian National Conference on Geosynthetics, Bologna, Italy, October 14–16, 2013 (Ling, H. I., Gottardi, G., Cazzuffi, D., Han, J. and Tatsuoka, F., eds). DEStech Publications, Lancaster, PA, 708–718.

Eldeberky, Y. 1996. Nonlinear transformation of wave spectra in the nearshore zone. PhD Thesis. Delft University of Techology, Netherlands.

Groeneweg, J., van Gent, M., van Nieuwkoop, J. and Toledo, Y. 2015. Wave propagation into complex coastal systems and the role of nonlinear interactions. Journal of Waterway, Port, Coastal, and Ocean Engineering141(5).

Hanes, D. M. and Erikson, L. H. 2013. The significance of ultra-refracted surface gravity waves on sheltered coasts, with application to San Francisco Bay. Estuarine, Coastal and Shelf Science133, 129–136.

Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K. et al. 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutsche Hydrographische Zeitung, 8(12).

Hasselmann, S., Hasselmann, K., Allender, J. H. and Barnett, T. P. 1985. Computations and parameterizations of the nonlin­ear energy transfer in a gravity-wave spectrum. Part II: parameterizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography15(11), 1378–1391.<1378:CAPOTN>2.0.CO;2

Kinsman, B. 1965. Wind Waves: Their Generation and Propa­gation on the Ocean Surface. Prentice-Hall, Englewood Cliffs, NJ. 

Komen, G. J., Hasselmann, S. and Hasselmann, K. 1984. On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography14(8), 1271–1285. 10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2

Kovaleva, O., Eelsalu, M. and Soomere, T. 2017. Hot-spots of large wave energy resources in relatively sheltered sections of the Baltic Sea coast. Renewable and Sustainable Energy Reviews74, 424–437.

Li, Y. S., Liu, S.-X., Wai, O. W. H. and Yu, Y.-X. 2000. Wave concentration by a navigation channel. Applied Ocean Research22(4), 199–213.

LinkFang. 2021. Ruhnu (accessed 2021-12-21).

Männikus, R., Soomere, T. and Kudryavtseva, N. 2019. Identification of mechanisms that drive water level extremes from in situ measurements in the Gulf of Riga during 1961–2017. Continental Shelf Research182, 22–36.

Orviku, K. 2018. Rannad ja rannikud (Beaches and Shores). Tallinna ülikooli kirjastus, Tallinn (in Estonian).

Pallares, E., Sánchez-Arcilla, A. and Espino, M. 2014. Wave energy balance in wave models (SWAN) for semi-enclosed domains – Application to the Catalan coast. Continental Shelf Research87, 41–53.

Rogers, W. E., Hwang, P. A. and Wang, D. W. 2003. Investigation of wave growth and decay in the SWAN model: three regional-scale applications. Journal of Physical Oceanography33(2), 366–389.<0366:IOWGAD>2.0.CO;2

Safadi, C. 2016. Wind and wave modelling for the evaluation of the maritime accessibility and protection afforded by ancient harbours. Journal of Archaeological Science: Reports5, 348–360.

Soomere, T. and Keevallik, S. 2001. Anisotropy of moderate and strong winds in the Baltic Proper. Proceedings of the Estonian Academy of Sciences. Engineering7(1), 35–49.

The SWAN team. 2021. SWAN scientific and technical documentation. Technical Report. Delft University of Technology. (accessed 2021-12-20).

Wu, J. 1982. Wind-stress coefficients over sea surface from breeze to hurricane. Journal of Geophysical Research  Oceans87(C12), 9704–9706.

Zijlema, M., van Vledder, G. Ph. and Holthuijsen, L. H. 2012. Bottom friction and wind drag for wave models. Coastal Engineering65, 19–26.

Back to Issue