ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Stepwise magma migration and accumulation processes and their effect on extracted melt chemistry; pp. 246–258
PDF | doi: 10.3176/earth.2009.4.03

Authors
Kristjan Urtson, Alvar Soesoo
Abstract

Numerical and analogue models suggest that melt production, its segregation from the solid matrix and subsequent transport and accumulation are highly dynamic and stepwise processes exhibiting scale invariant patterns in both time and length scales, which is characteristic of self-organized critical systems. This phenomenon is also observed in migmatites at several localities, where the leucosome thickness statistics obey power laws. Stepwise melt transport and deformation-enhanced melt mobility affect melt production dynamics by determining the distribution of extracted melt batch sizes and residence times of melt pockets within the host rock, which in turn would influence the geochemistry of extracted melts. We introduce a numerical approach, which enables qualitative and quantitative assessment of the effects of stress-induced melt migration and accumulation on the chemistry of partial melts. The model suggests that apart from different sources and melting percentages, deformation can be an important factor in producing geochemical variations within and between intrusive/extrusive complexes.

References

Arzi, A. A. 1978. Critical phenomena in the rheology of partially molten rocks. Tectonophysics, 44, 173–184.
doi:10.1016/0040-1951(78)90069-0

Bagdassarov, N. S., Dorfman, A. M. & Dingwell, D. B. 1996. Modelling of melt segregation processes by high-temperature centrifuging of partially molten granites – I. Melt extraction by compaction and deformation. Geophysical Journal International, 127, 616–626.
doi:10.1111/j.1365-246X.1996.tb04042.x

Bak, P. 1996. How Nature Works: The Science of Self-Organized Criticality. Copernicus, New York, 212 pp.

Bak, P., Tang, C. & Wiesenfeld, K. 1987. Self-organized criticality: an explanation of 1/f noise. Physical Review Letters, 59, 381–384.
doi:10.1103/PhysRevLett.59.381

Bak, P., Tang, C. & Wiesenfeld, K. 1988. Self-organized criticality. Physical Review A, 38, 364–374.
doi:10.1103/PhysRevA.38.364

Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P. & Berkowitz, B. 2001. Scaling of fracture systems in geological media. Reviews of Geophysics, 39, 347–383.
doi:10.1029/1999RG000074

Bons, P. D. 2001. The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics, 336, 1–17.
doi:10.1016/S0040-1951(01)00090-7

Bons, P. D. & Soesoo, A. 2003. Could magma transport and accumulation be a useful analogue to understand hydro­carbon extraction? Oil Shale, 20, 412–420.

Bons, P. D. & van Milligen, B. P. 2001. New experiment to model self-organized critical transport and accumulation of melt and hydrocarbons from their source rock. Geology, 29, 919–922.
doi:10.1130/0091-7613(2001)029<0919:NETMSO>2.0.CO;2

Bons, P. D., Dougherty-Page, J. & Elburg, M. A. 2001. Stepwise accumulation and ascent of magmas. Journal of Meta­morphic Geology, 19, 627–633.
doi:10.1046/j.0263-4929.2001.00334.x

Bons, P. D., Arnold, J., Elburg, M. A., Kalda, J., Soesoo, A. & van Milligen, B. P. 2004. Melt extraction and accumulation from partially molten rocks. Lithos, 78, 25–42.
doi:10.1016/j.lithos.2004.04.041

Bons, P. D., Druguet, E., Castaño, L. M. & Elburg, M. A. 2008. Finding what is now not there anymore: recognizing missing fluid and magma volumes. Geology, 36, 851–854.
doi:10.1130/G24984A.1

Bons, P. D., Becker, J. K., Elburg, M. A. & Urtson, K. Granite formation: stepwise accumulation of melt or connected networks? Earth and Environmental Science Transactions of the Royal Society of Edinburgh [in press].

Brown, M. 1994. The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. Earth-Science Reviews, 36, 83–130.
doi:10.1016/0012-8252(94)90009-4

Brown, M. 2004. The mechanism of melt extraction from lower continental crust of orogens. Transactions of the Royal Society of Edinburgh: Earth Sciences, 95, 35–48.
doi:10.1017/S0263593300000900

Brown, M. 2007. Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and con­sequences. Journal of the Geological Society, London, 164, 709–730.
doi:10.1144/0016-76492006-171

Brown, M. A., Brown, M., Carlson, W. D. & Denison, C. 1999. Topology of syntectonic melt-flow networks in the deep crust: inferences from three-dimensional images of leucosome geometry in migmatites. American Mineralogist, 84, 1793–1818.

Bulau, J. R., Waff, H. S. & Tyburczy, J. A. 1979. Mechanical and thermodynamical constraints on fluid distribution in partial melts. Journal of Geophysical Research, 84, 6102–6108.
doi:10.1029/JB084iB11p06102

Chappell, B. W. 1996. Magma mixing and the production of compositional variation within granite suites: evidence from the granites of southeastern Australia. Journal of Petrology, 37, 449–470.
doi:10.1093/petrology/37.3.449

Chappell, B. W. & White, A. J. R. 1974. Two contrasting granite types. Pacific Geology, 8, 173–174.

Chappell, B. W. & White, A. J. R. 1984. I- and S-type granites in the Lachlan Fold Belt, southeastern Australia. In Geology of Granites and Their Metallogenic Relation (Xu, K.-Q. & Tu, G.-C., eds), pp. 87–101. Science Press, Beijing.

Clemens, J. D. & Mawer, C. K. 1992. Granitic magma transport by fracture propagation. Tectonophysics, 204, 339–360.
doi:10.1016/0040-1951(92)90316-X

Clemens, J. D. & Wall, V. J. 1984. Origin and evolution of a peraluminous silicic ignimbrite suite: the Violet Town Volcanics. Contributions to Mineralogy and Petrology, 88, 354–371.
doi:10.1007/BF00376761

Davy, P. 1993. On the frequency-length distribution of the San Andreas fault system. Journal of Geophysical Research, 98, 12141–12151.
doi:10.1029/93JB00372

Elburg, M. A. 1996. Genetic significance of multiple enclave types in a peraluminous ignimbrite suite, Lachlan Fold Belt, Australia. Journal of Petrology, 37, 1385–1408.
doi:10.1093/petrology/37.6.1385

Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. 1997. Element transport from subducted slab to juvenile crust at the Mariana arc. Journal of Geophysical Research, 102, 14991–15019.
doi:10.1029/97JB00788

Flinders, J. & Clemens, J. D. 1996. Non-linear dynamics, chaos, complexity and enclaves in granitoid magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87, 225–232.

Ghiorso, M. S. & Sack, R. O. 1995. Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extra­polation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology, 119, 197–212.
doi:10.1007/BF00307281

Harris, N., Ayres, M. & Massey, J. 1995. Geochemistry of granitic melts produced during the incongruent melting of muscovite: implications for the extraction of Himalayan leucogranite magmas. Journal of Geophysical Research, 100, 15767–15777.
doi:10.1029/94JB02623

Hobden, B. J., Houghton, B. F., Davidson, J. P. & Weaver, S. D. 1999. Small and short-lived magma batches at composite volcanoes: time windows at Tongariro volcano, New Zealand. Journal of Geological Society, London, 156, 865–868.
doi:10.1144/gsjgs.156.5.0865

Johannes, W., Ehlers, C., Kriegsman, L. M. & Mengel, K. 2003. The link between migmatites and S-type granites in the Turku area, southern Finland. Lithos, 68, 69–90.
doi:10.1016/S0024-4937(03)00032-X

Jurewicz, S. R. & Watson, E. B. 1984. Distribution of partial melt in a felsic system: the importance of surface energy. Contributions to Mineralogy and Petrology, 85, 25–29.
doi:10.1007/BF00380218

Kruhl, J. H. 1994. The formation of extensional veins: an application of the Cantordust model. In Fractals and Dynamic Systems in Geoscience (Kruhl, J. H., ed.), pp. 95–104. Springer Verlag, Berlin.

Laporte, D. & Watson, E. B. 1995. Experimental and theoretical constraints on melt distribution in crustal sources: the effect of crystalline anisotropy on melt interconnectivity. Chemical Geology, 124, 161–184.
doi:10.1016/0009-2541(95)00052-N

Leeman, W. P., Smith, D. R., Hildreth, W., Palacz, Z. & Rogers, N. 1990. Compositional diversity of late Cenozoic basalts in a transect across the southern Washington Cascades: implications for subduction zone magmatism. Journal of Geophysical Research, 95, 19561–19582.
doi:10.1029/JB095iB12p19561

Marchildon, N. & Brown, M. 2001. Melt segregation in late syn-tectonic anatectic migmatites: an example from the Onawa Contact Aureole, Maine, USA. Physics and Chemistry of the Earth (A), 26, 225–229.
doi:10.1016/S1464-1895(01)00049-7

Marchildon, N. & Brown, M. 2003. Spatial distribution of melt-bearing structures in anatectic rocks from Southern Brittany, France: implications for melt transfer at grain- to orogen-scale. Tectonophysics, 364, 215–235.
doi:10.1016/S0040-1951(03)00061-1

Mengel, K., Richter, M. & Johannes, W. 2001. Leucosome-forming small-scale geochemical processes in the meta­pelitic migmatites of the Turku area, Finland. Lithos, 56, 47–73.
doi:10.1016/S0024-4937(00)00059-1

Michael, P. J. 1984. Chemical differentiation of the Cordillera Paine granite (southern Chile) by in situ fractional crystalli­zation. Contributions to Mineralogy and Petrology, 87, 179–195.
doi:10.1007/BF00376223

Pereira, M. F. & Silva, J. B. 2002. The geometry and kinematics of enclaves in sheared migmatites from the Evora Massif, OssaMorena Zone (Portugal). Geogaceta, 31, 199–202.

Perugini, D. & Poli, G. 2000. Chaotic dynamics and fractals in magmatic interaction processes: a different approach to the interpretation of mafic microgranular enclaves. Earth and Planetary Science Letters, 175, 93–103.
doi:10.1016/S0012-821X(99)00282-4

Perugini, D. & Poli, G. 2004. Analysis and numerical simulation of chaotic advection and chemical diffusion during magma mixing: petrological implications. Lithos, 78, 43–66.
doi:10.1016/j.lithos.2004.04.039

Perugini, D., Poli, G., Christofides, G. & Eleftheriadis, G. 2003. Magma mixing in the Sithonia Plutonic Complex, Greece: evidence from mafic microgranular enclaves. Mineralogy and Petrology, 78, 173–200.
doi:10.1007/s00710-002-0225-0

Perugini, D., Petrelli, M. & Poli, G. 2006. Diffusive fractionation of trace elements by chaotic mixing of magmas. Earth and Planetary Science Letters, 243, 669–680.
doi:10.1016/j.epsl.2006.01.026

Petford, N. & Koenders, M. A. 1998. Self-organisation and fracture connectivity in rapidly heated continental crust. Journal of Structural Geology, 20, 1425–1434.
doi:10.1016/S0191-8141(98)00081-9

Poli, G. 1992. Geochemistry of Tuscan Archipelago Granitoids, central Italy: the role of hybridization processes in their genesis. Journal of Geology, 100, 41–56.
doi:10.1086/629570

Poli, G. & Tommasini, S. 1991. Origin and significance of microgranular inclusions in calc–alkaline granitoids: a proposed working model. Journal of Petrology, 32, 657–666.

Pressley, R. A. & Brown, M. 1999. The Phillips pluton, Maine, USA: evidence of heterogeneous crustal sources and implications for granite ascent and emplacement in convergent orogens. Lithos, 46, 335–366.
doi:10.1016/S0024-4937(98)00073-5

Puura, V., Hints, R., Huhma, H., Klein, V., Konsa, M., Kuldkepp, R., Mäntari, I. & Soesoo, A. 2004. Svecofennian metamorphic zones in the basement of Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 53, 190–209.

Sawyer, E. 1991. Disequilibrium melting and the rate of melt–residuum separation during migmatization of mafic rocks from the Grenville Front, Quebeq. Journal of Petrology, 32, 701–738.

Sawyer, E. W. 2001. Melt segregation in the continental crust: distribution and movement of melt in anatectic rocks. Journal of Metamorphic Geology, 19, 291–309.
doi:10.1046/j.0263-4929.2000.00312.x

Secor, D. T. & Pollard, D. D. 1975. On the stability of open hydraulic fractures in the Earth’s crust. Geophysical Research Letters, 2, 510–513.
doi:10.1029/GL002i011p00510

Slater, L., McKenzie, D., Grönvold, K. & Shimizu, N. 2001. Melt generation and movement beneath Theistareykir, NE Iceland. Journal of Petrology, 42, 321–354.
doi:10.1093/petrology/42.2.321

Sobolev, A. V., Hofmann, A. W. & Nikogosian, I. K. 2000. Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa Lavas. Nature, 404, 986–990.
doi:10.1038/35010098

Soesoo, A. 1999. The Evolution of Mantle-Related Magmas in Contrasted Tectonic Settings: Examples from SE Australia. Unpublished PhD thesis, Monash University, Melbourne, Australia, 307 pp.

Soesoo, A. 2000. Fractional crystallisation of mantle-derived melts as a mechanism for some I-type granite petrogenesis: an example from Lachlan Fold Belt, Australia. Journal of the Geological Society, London, 157, 135–150.

Soesoo, A. 2006. Mesozoic alkali basalts and felsic rocks in eastern Victoria, Australia. In Dyke Swarms – Time Markers of Crustal Evolution (Hanski, E., Mertanen, S., Rämö, T. & Vuollo, J., eds), pp. 131–146. Taylor and Francis, London.

Soesoo, A. & Bons, P. D. 1998. Granite classification and the effect of deformation on the chemistry of granitic melts. In International Workshop on Anorogenic and Other Granites of Proterozoic Domains. Abstracts, pp. 42–43. Tallinn-Arbavere, Estonia.

Soesoo, A. & Bons, P. D. 1999. The effect of deformation rate on melt chemistry in step-wise accumulation of granitic melt. In EUG 10. European Union of Geosciences, 10, Journal of Conference Abstracts, p. 424.

Soesoo, A. & Nicholls, I. A. 1999. Mafic rocks spatially associated with Devonian felsic intrusions of the Lachlan Fold Belt: a possible mantle contribution to crustal evolution processes. Australian Journal of Earth Sciences, 46, 725–734.
doi:10.1046/j.1440-0952.1999.00740.x

Soesoo, A., Kalda, J., Bons, P., Urtson, K. & Kalm, V. 2004a. Fractality in geology: a possible use of fractals in the studies of partial melting processes. Proceedings of the Estonian Academy of Sciences, Geology, 53, 13–27.

Soesoo, A., Puura, V., Kirs, J., Petersell, V., Niin, M. & All, T. 2004b. Outlines of the Precambrian basement of Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 53, 149–164.

Spiegelman, M. & Kelemen, P. B. 2003. Extreme chemical variability as a consequence of channelized melt transport. Geochemistry Geophysics Geosystems, 4(7), 1055.
doi:10.1029/2002GC000336

Stephens, W. E. 1992. Spatial, compositional and rheological constraints on the origin of zoning in the Criffell pluton, Scotland. Transactions of the Royal Society of Edinburgh, Earth Sciences, 83, 191–199.

Takada, A. 1990. Experimental study on propagation of liquid-filled crack in gelatin: shape and velocity in hydrostatic stress condition. Journal of Geophysical Research, 95, 8471–8481.
doi:10.1029/JB095iB06p08471

Tanner, D. C. 1999. The scale-invariant nature of migmatite from the Oberpfalz, NE Bavaria and its significance for melt transport. Tectonophysics, 302, 297–305.
doi:10.1016/S0040-1951(98)00286-8

Tommasini, S. & Davies, G. R. 1997. Isotope disequilibrium melting during anatexis: a case study of contact melting, Sierra Nevada, California. Earth and Planetary Science Letters, 148, 273–285.
doi:10.1016/S0012-821X(97)00031-9

Urtson, K. & Soesoo, A. 2007. An analogue model of melt segregation and accumulation processes in the Earth’s crust. Estonian Journal of Earth Sciences, 56, 3–10.

Vernon, R. H., Etheridge, M. E. & Wall, V. J. 1988. Shape and microstructure of microgranitoid enclaves: indicators of magma mingling and flow. Lithos, 22, 1–11.
doi:10.1016/0024-4937(88)90024-2

Vigneresse, J. L., Barbey, P. & Cuney, M. 1996. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Journal of Petrology, 37, 1579–1600.
doi:10.1093/petrology/37.6.1579

Vigneresse, J. L. & Burg, J. P. 2000. Continuous vs. dis­continuous melt segregation in migmatites: insights from a cellular automaton model. Terra Nova, 12, 188–192.
doi:10.1046/j.1365-3121.2000.00299.x

Wareham, C. D., Vaughan, A. P. M. & Miller, I. L. 1997. The Wiley Glacier complex, Antarctic Peninsula: pluton growth by pulsing of granitoid magmas. Chemical Geology, 143, 65–80.
doi:10.1016/S0009-2541(97)00100-9

Weertman, J. 1971. Theory of water-filled crevasses in glaciers applied to vertical magma transport beneath ocean ridges. Journal of Geophysical Research, 76, 1171–1183.
doi:10.1029/JB076i005p01171

Weinberg, R. F. 1999. Mesoscale pervasive felsic magma migration: alternatives to dyking. Lithos, 46, 393–410.
doi:10.1016/S0024-4937(98)00075-9
Back to Issue