Baltic countries are located in the limits of the Baltic sedimentary basin, a 700 km long and 500 km wide synclinal structure. The axis of the syneclise plunges to the southwest. In Poland the Precambrian basement occurs at a depth of 5 km. The Baltic Basin includes the Neoproterozoic Ediacaran (Vendian) at the base and all Phanerozoic systems. Two aquifers, the lower Devonian and Cambrian reservoirs, meet the basic requirements for CO2 storage. The porosity and permeability of sandstone decrease with depth. The average porosity of Cambrian sandstone at depths of 80–800, 800–1800, and 1800–2300 m is 18.6, 14.2, and 5.5%, respectively. The average permeability is, respectively, 311, 251, and 12 mD. Devonian sandstone has an average porosity of 26% and permeability in the range of 0.5–2 D. Prospective Cambrian structural traps occur only in Latvia. The 16 largest ones have CO2 storage capacity in the range of 2–74 Mt, with total capacity exceeding 400 Mt. The structural trapping is not an option for Lithuania as the uplifts there are too small. Another option is utilization of CO2 for enhanced oil recovery (EOR). The estimated total EOR net volume of CO2 (part of CO2 remaining in the formation) in Lithuania is 5.6 Mt. Solubility and mineral trapping are a long-term option. The calculated total solubility trapping capacity of the Cambrian reservoir is as high as 11 Gt of CO2 within the area of the supercritical state of carbon dioxide.
Bachu, S., Gunter, W. D. & Perkins, E. H. 1994. Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Conversion and Management, 35, 269–279.
doi:10.1016/0196-8904(94)90060-4
Brangulis, A. P., Kanev, S. V., Margulis, L. S. & Pomerantseva, R. A. 1993. Geology and hydrocarbon prospects of the Paleozoic in the Baltic region. In Petroleum Geology of NW Europe. Proceedings of the 4th Conference, March–April, 1992 (Parker, J. R., ed.), pp. 651–656. Geological Society, London.
Davis, A., Jesinska, A., Kreslins, A., Zebergs, V. & Zeltins, N. 2006. Increasing role of underground gas storages for reliable supply of gas to Latvia, Lithuania, Estonia, Finland and NW Russia and prospects of development of Incukalns underground gas storage. In 23rd World Gas Conference, Amsterdam. CD.
Dullien, F. A. L. 1992. Porous Media Fluid Transport and Pore Structure, 2nd ed. Academic Press, San Diego, 567 pp.
Ennis-King, J. & Paterson, L. 2003. Rate of dissolution due to convection mixing in the underground starge of carbon dioxide. In Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Vol. 1 (Gale, J. & Kaja, Y., eds), pp. 501–510. Pergamon.
Jõeleht, A., Kirsimäe, K., Shogenova, A., Šliaupa, S., Kukkonen, I. T., Rasteniene, V. & Zabele, A. 2002. Thermal conductivity of Cambrian siliciclastic rocks from the Baltic basin. Proceedings of the Estonian Academy of Sciences, Geology, 51, 5–15.
[LEGMA] Latvian Environment, Geology and Meteorology Agency. 2007. Geological Structures for the Establishment of Underground Gas Storages. Riga, 16 pp.
Metz, B., Davidson, O., de Coninck, H., Loos, M. & Meyer, L. (eds). 2005. IPCC Special Report. Carbon Dioxide Capture and Storage. Summary for Policymakers and Technical Summary, 53 pp. [http://www.ipcc.ch, accessed 7 Sept. 2009].
Misāns, J. (ed.). 1981. Latvijas PSR tektoniskā karte. Mērogs 1 : 500 000. Latvijas PSR Ģeoloģijas Pārvalde, Leningrad, 2 sheets.
Paškevičius, J. 1997. The Geology of the Baltic Republics. Vilnius University, Geological Survey of Lithuania, Vilnius, 387 pp.
Raidla, V., Kirsimäe, K., Bitjukova, L., Jõeleht, A., Shogenova, A. & Šliaupa, S. 2006. Lithology and diagenesis of the poorly consolidated Cambrian siliciclastic sediments in the northern Baltic Sedimentary Basin. Geological Quarterly, 50, 395–406.
Shogenova, A., Kirsimäe, K., Bitjukova, L., Jõeleht, A. & Mens, K. 2001. Physical properties and composition of cemented siliciclastic Cambrian rocks, Estonia. In Research in Petroleum Technology (Fabricius, I. L., ed.), pp. 123–149. Nordisk Energiforskning, Ås, Norway.
Shogenova, A., Jõeleht, A., Kirsimäe, K., Šliaupa, S., Rasteniene, V. & Zabele, A. 2002a. Electric properties of siliciclastic rocks in the Baltic Cambrian basin. In Proceedings of the 6th Nordic Symposium on Petrophysics, 15–16 May, 2001 (Backe, K. & Loermans, T., eds). Nordic Energy Research Programme, Norwegian University of Science and Technology, Trondheim, Norway, 14 pp. [CD; http://www.ipt.ntnu.no/nordic, accessed 7 Sept. 2009].
Shogenova, A., Mens, K., Sliaupa, S., Rasteniene, V., Jõeleht, A., Kirsimäe, K., Zabele, A. & Freimanis, A. 2002b. Factors influenced porosity of the siliciclastic rocks in the Baltic Cambrian basin. In Extended Abstracts, Vol. 2, 64th EAGE Conference and Technical Exhibition, Florence, 26–30 May 2002. European Association of Geoscientists & Engineers, Ladenius Communicate, Houten. P218, 4 pp.
Shogenova, A., Sliaupa, S., Shogenov, K., Sliaupiene, R., Pomeranceva, R., Uibu, M. & Kuusik, R. 2008. CO2 geological storage and mineral trapping potential in the Baltic region. Slovak Geological Magazine, 5–14.
Shogenova, A., Šliaupa, S., Shogenov, K., Šliaupienė, R., Pomeranceva, R., Vaher, R., Uibu, M. & Kuusik, R. 2009. Possibilities for geological storage and mineral trapping of industrial CO2 emissions in the Baltic region. Energy Procedia, 1, 2753–2760.
doi:10.1016/j.egypro.2009.02.046
Sliaupa, S., Rasteniene, V., Lashkova, L. & Shogenova, A. 2001. Factors controlling petrophysical properties of Cambrian siliciclastic deposits of Central and Western Lithuania. In Research in Petroleum Technology (Fabricius, I. L., ed.), pp. 157–180. Nordisk Energiforskning, Ås, Norway.
Sliaupa, S., Hoth, P., Shogenova, A., Huenges, E., Rasteniene, V., Freimanis, A., Bityukova, L., Joeleht, A., Kirsimäe, K., Laskova, L. & Zabele, A. 2003. Characterization of Cambrian reservoir rocks and their fluids in the Baltic States (CAMBALTICA). In Cleaner Energy Systems Through Utilization of Renewable Geothermal Energy Resources (Bujakowski, W., ed.), pp. 61–73. Kajc, Krakow.
Šliaupa, S., Satkūnas, J. & Šliaupienė, R. 2005. Prospects of geological disposal of CO2 in Lithuania. Geologija (Vilnius), 51, 20–31 [in Lithuanian, with English summary].
Sliaupa, S., Shogenova, A., Shogenov, K., Sliaupiene, R., Zabele, A. & Vaher, R. 2008. Industrial carbon dioxide emissions and potential geological sinks in the Baltic States. Oil Shale, 25, 465–484.
doi:10.3176/oil.2008.4.06
Suekane, T., Nobuso, T., Hirai, S & Kiyota, M. 2008. Geological storage of carbon dioxide by residual gas and solubility trapping. International Journal of Greenhouse Gas Control, 2, 58–64.
doi:10.1016/S1750-5836(07)00096-5
Vangkilde-Pedersen, T. & Kirk, K. (eds). 2009. FP6 EU GeoCapacity Project, Assessing European Capacity for Geological Storage of Carbon Dioxide, Storage Capacity. D26, WP4 Report Capacity Standards and Site Selection Criteria. Geological Survey of Denmark and Greenland, 45 pp. [http://www.geology.cz/geocapacity/publications, accessed 5 Oct. 2009].
Vangkilde-Pedersen, T., Lyng Anthonsen, K., Smith, N., Kirk, K., Neele, F., van der Meer, B., Le Gallo, Y., Bossie-Codreanu, D., Wojcicki, A., Le Nindre, Y.-M., Hendriks, C., Dalhoff, F. & Christensen, N. P. 2009. Assessing European capacity for geological storage of carbon dioxide – the EU GeoCapacity project. Energy Procedia, 1(1), 2663–2670.
doi:10.1016/j.egypro.2009.02.034