The sorption capacity of selected heavy metals (Cd, Pb, Cu, Cr) to five Estonian soils was evaluated using spiked subsoil samples in laboratory experiments. The experimental sorption data fitted well to the linear Freundlich isotherm. The sorption of metals in subsoil depended on the soil type, e.g., mineral composition. The results indicate that the content of quartz and carbonates is important in affecting the metal sorption capacity of subsoil. On the basis of our data the possibility of penetration in depth and accumulation of mobile metals was evaluated. It was concluded that increase in dissolved Cd and accumulation of other metals in the subsoil of Podzol is expected. The accumulation of Pb could be the main process for soils with a high amount of dolomite.
Ahmed, I. A. M., Crout, N. M. J. & Young, S. D. 2008. Kinetics of Cd sorption, desorption and fixation by calcite: a long-term radiotracer study. Geochimica et Cosmochimica Acta, 72, 1498–1512.
doi:10.1016/j.gca.2008.01.014
Alloway, B. J. 1995. Soil processes and the behaviour of metals. In Heavy Metals in Soils (Alloway, B. J., ed.), pp. 38–57. Blackie Academic and Professional, London.
Alumaa, P., Steinnes, E., Kirso, U. & Petersell, V. 2001. Heavy metal sorption by different Estonian soil types at low equilibrium solution concentration. Proceedings of the Estonian Academy of Sciences, Chemistry, 50, 104–115.
Anderson, P. R. & Christensen, T. H. 1988. Distribution coefficients of Cd, Co, Ni and Zn in soils. Journal of Soil Science, 39, 15–22.
doi:10.1111/j.1365-2389.1988.tb01190.x
Bradl, H. B. 2004. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277, 1–18.
doi:10.1016/j.jcis.2004.04.005
Carlon, C., Dalla Valle, M. & Marcomini, A. 2004. Regression models to predict water-soil heavy metals partition coefficients in risk assessment studies. Environmental Pollution, 127, 109–115.
doi:10.1016/S0269-7491(03)00253-7
Citeau, L., Lamy, I., van Oort, F. & Elsass, F. 2003. Colloidal facilitated transfer of metals in soils under different land use. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217, 11–19.
doi:10.1016/S0927-7757(02)00554-X
Elliott, H. A., Liberati, M. R. & Huang, C. P. 1986. Competitive adsorption of heavy metals by soils. Journal of Environmental Quality, 15, 214–219.
Han, F. X., Kingery, W. L. & Selim, H. M. 2001. Accumulation, redistribution, transport and bioavailability of heavy metals in waste-amended soils. In Trace Elements in Soil: Bioavailability, Flux and Transfer (Iskandar, I. K. & Kirkham, M. B., eds), pp. 141–168. CRC Press, Boca Raton, FL, USA.
Hooda, P. S. & Alloway, B. J. 1998. Cadmium and lead sorption behaviour of selected English and Indian soils. Geoderma, 84, 121–134.
doi:10.1016/S0016-7061(97)00124-9
Kabata-Pendias, A. 2004. Soil–plant transfer of trace elements – an environmental issue. Geoderma, 122, 143–149.
doi:10.1016/j.geoderma.2004.01.004
Kalbitz, K. & Wennrich, R. 1998. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Science of Total Environment, 209, 27–39.
doi:10.1016/S0048-9697(97)00302-1
Kandeler, E., Tscherko, D., Bruce, K. D., Stemmer, M., Hobbs, P. J., Bradgett, R. D. & Amelung, W. 2000. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biology and Fertility of Soils, 32, 390–400.
doi:10.1007/s003740000268
Keller, C. & Domergue, F.-L. 1996. Soluble and particulate transfers of Cu, Cd, Al, Fe and some major elements in gravitation waters of a Podzol. Geoderma, 71, 263–274.
doi:10.1016/0016-7061(96)00009-2
Khan, S., Aijun, L., Zhang, S., Hu, Q. & Zhu, Y.-G. 2008. Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. Journal of Hazardous Materials, 152, 506–515.
doi:10.1016/j.jhazmat.2007.07.014
Kookana, R. S. & Naidu, R. 1998. Effect of soil solution composition on cadmium transport through variable charge soils. Geoderma, 84, 235–248.
doi:10.1016/S0016-7061(97)00131-6
Lepane, V., Varvas, M., Viitak, A., Alliksaar, T. & Heinsalu, A. 2007. Sedimentary record of heavy metals in Lake Rõuge Liinjärv, southern Estonia. Estonian Journal of Earth Sciences, 56, 221–232.
doi:10.3176/earth.2007.03
Petersell, V., Mõttus, V., Täht, K. & Unt, L. 1996. Bulletin of the Geochemical Monitoring of Soil 1992–1994. Department of Environmental Geology, Geological Survey of Estonia, Tallinn, 68 pp.
Petersell, V., Ressar, H., Carlsson, M., Mõttus, V., Enel, M., Mardla, A. & Täht, K. 1997. The Geochemical Atlas of the Humus Horizon of Estonian Soil. Geological Survey of Estonia, Tallinn–Uppsala, 75 pp.
Punning, J.-M. & Varvas, M. 1993. Influence of natural and manmade processes on the geochemical composition of lake sediments, northeast Estonia. Applied Geochemistry, 8, Suppl. 2, 75–77.
doi:10.1016/S0883-2927(09)80015-2
Qiang, X., Bing, L., Hui-yun, W. & Lei, L. 2006. Numerical simulation of trace element transport on subsurface environment pollution in coal mine spoil. Journal of Trace Elements in Medicine and Biology, 20, 97–104.
doi:10.1016/j.jtemb.2005.12.003
Sastre, J., Rauret, G. & Vidal, M. 2007. Sorption–desorption tests to assess the risk derived from metal contamination in mineral and organic soils. Environment International, 33, 246–256.
doi:10.1016/j.envint.2006.09.017
Selim, H. M. & Amacher, M. C. 1997. Reactivity and Transport of Heavy Metals in Soils. Lewis Publishers, Boca Raton, FL, 201 pp.
Shirvani, M., Kalbasi, M., Shariatmadari, H., Nourbakhsh, F. & Najafi, B. 2006. Sorption–desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions: isotherm hysteresis. Chemosphere, 65, 2178–2184.
doi:10.1016/j.chemosphere.2006.06.002
Singh, B. R. & Steinnes, E. 1994. Soil and water contamination by heavy metals. In Soil Process and Water Quality (Lal, R. & Stewart, B. A., eds), pp. 233–270. Lewis Publisher, Boca Raton, FL, USA.
Sipos, P., Németh, T., Kis, V. & Mohai, I. 2008. Sorption of copper, zinc and lead on soil mineral phases. Geoderma, 73, 461–469.
Sterckeman, T., Douay, F., Proix, N. & Fourrier, H. 2000. Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environmental Pollution, 107, 377–389.
doi:10.1016/S0269-7491(99)00165-7
Turner, J. N., Brewer, P. A. & Macklin, M. G. 2008. Fluvial-controlled metal and As mobilisation, dispersal and storage in the Río Guadiamar, SW Spain and its implications for long-term contaminant fluxes to the Doñana wetlands. Science of the Total Environment, 394, 144–161.
doi:10.1016/j.scitotenv.2007.12.021
Twardowska, I. 2004. Assessment of pollution from solid waste. In Solid Waste: Assessment, Monitoring and Remediation 4 (Twardowska, I., Allen, H. E., Kettrup, A. F. & Lacy, W. J., eds), pp. 173–205. Elsevier, Amsterdam.
doi:10.1016/S0713-2743(04)80010-2
Usman, A. R. A. 2008. The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma, 144, 334–343.
doi:10.1016/j.geoderma.2007.12.004
Veeresh, H., Tripathy, S., Chaudhuri, D., Hart, B. R. & Powell, M. A. 2003. Competitive adsorption behavior of selected heavy metals in three soil types of India amended with fly ash and sewage sludge. Environmental Geology, 44, 363–370.
doi:10.1007/s00254-003-0776-3
Vega, F. A., Covelo, E. F. & Andrade, M. L. 2006. Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics. Journal of Colloid Interface Science, 298, 582–592.
doi:10.1016/j.jcis.2006.01.012
Weber, J., Karczewska, A., Drozd, J., Licznar, M., Licznar, S., Jamroz, E. & Kocowicz, A. 2007. Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biology and Biochemistry, 39, 1294–1302.
doi:10.1016/j.soilbio.2006.12.005
Zhang, M. & Zheng, S. 2007. Competitive adsorption of Cd, Cu, Hg and Pb by agricultural soils of the Changjiang and Zhujian deltas. Journal of Zhejiang University – Science A, 8, 1808–1815.
Zhao, L. Y. L., Schulin, R. & Nowack, B. 2009. Cu and Zn mobilization in soil columns percolates by different irrigation solutions. Environmental Pollution, 157, 823–833.
doi:10.1016/j.envpol.2008.11.011