The Baltoscandian lower Palaeozoic succession is well known for the abundance, diversity and excellent preservation of various groups of microfossils, such as acritarchs, chitinozoans, scolecodonts and conodonts. This paper describes a new enigmatic Middle Ordovician organic-walled microfossil Vikisphaera kundanagen. et sp. nov., characterized by a dark brown to black hollow spherical shell, 90–200 μm in diameter, with an equatorial groove and lack of openings. The specimens of Vikisphaera have been collected from several localities across Baltoscandia including Estonia, Sweden, Latvia and northwestern Russia, and their stratigraphic range is restricted to the Kunda Regional Stage, lower Darriwilian. The wide geographical distribution and short temporal range of Vikisphaera imply its biostratigraphic utility. The shape and characteristics of the shell wall of Vikisphaera are different from those of prasinophytes and other organic-walled microfossils common in lower Palaeozoic rocks. The new microfossil resembles egg shells of some invertebrates, such as arthropods, suggesting that it could represent egg capsules of a group of marine metazoans, possibly soft-bodied creatures with low fossilization potential. However, before the metazoan origin of Vikisphaera is confirmed, it can be considered as an acritarch – an organic-walled microfossil of unknown affinity.
Achab, A. & Paris, F. 2007. The Ordovician chitinozoan biodiversification and its leading factors. Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 5–19.
https://doi.org/10.1016/j.palaeo.2006.02.030
Ainsaar, L., Kaljo, D., Martma, T., Meidla, T., Männik, P., Nõlvak, J. & Tinn, O. 2010. Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: A correlation standard and clues to environmental history. Palaeogeography, Palaeoclimatology, Palaeoecology, 294, 189–201.
https://doi.org/10.1016/j.palaeo.2010.01.003
Bengtson, S. & Zhao, Y. 1997. Fossilized metazoan embryos from the earliest Cambrian. Science, 277, 1645–1648.
https://doi.org/10.1126/science.277.5332.1645
Bergström, S. M., Chen, X., Gutiérrez-Marco, J. C. & Dronov, A. 2009. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia, 42, 97–107.
https://doi.org/10.1111/j.1502-3931.2008.00136.x
Bergström, S. M., Calner, M., Lehnert, O. & Noor, A. 2011. A new upper Middle Ordovician–Lower Silurian drillcore standard succession from Borenshult in Östergötland, southern Sweden: 1. Stratigraphical review with regional comparisons. GFF, 133, 149–171.
https://doi.org/10.1080/11035897.2011.622049
Bergström, S. M., Ahlberg, P., Maletz, J., Lundberg, F. & Joachimski, M. M. 2018. Darriwilian (Middle Ordovician) chemostratigraphy linked to graptolite, conodont and trilobite biostratigraphy in the Fågelsång-3 drill core, Scania, Sweden. GFF, 140, 229–240.
https://doi.org/10.1080/11035897.2018.1466833
Cocks, L. R. M. & Torsvik, T. H. 2005. Baltica from the late Precambrian to mid-Palaeozoic times: The gain and loss of a terrane’s identity. Earth-Science Reviews, 72, 39–66.
https://doi.org/10.1016/j.earscirev.2005.04.001
Cocks, L. R. M. & Torsvik, T. H. 2020. Ordovician palaeogeography and climate change. Gondwana Research, S1342937X20302756.
Cohen, P. A., Knoll, A. H. & Kodner, R. B. 2009. Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proceedings of the National Academy of Sciences, 106, 6519–6524.
https://doi.org/10.1073/pnas.0902322106
Eisenack, A. 1931. Neue Mikrofossilien des baltischen Silurs. I. Paläontologische Zeitschrift, 13, 74–118.
https://doi.org/10.1007/BF03043326
Eisenack, A. 1932. Neue Mikrofossilien des baltischen Silurs. II. Paläontologische Zeitschrift, 14, 257–277.
https://doi.org/10.1007/BF03042096
Eisenack, A. 1934. Neue Mikrofossilien des baltischen Silurs. III. und neue Mikrofossilien des böhmischen Silurs. I. Paläontologische Zeitschrift, 16, 52–76.
https://doi.org/10.1007/BF03041667
Eisenack, A. 1937. Was ist Melanostrophus? Zeitschrift für Geschiebeforschung und Flachlandsgeologie, 13, 100–104.
Eisenack, A. 1963. Über einige Arten der Gattung Tasmanites Newton 1875. Grana Palynologica, 4, 203–216.
https://doi.org/10.1080/00173136309436743
Eiserhardt, K.-H. 1984. Carinatosphaeridium n. g. (Acritarcha) aus einem Öjlemyr-Flintgeschiebe Gotlands (ob. Ordoviz.). Neues Jahrbuch für Geologie und Paläontologie – Monatshefte Jg., 9, 521–528.
https://doi.org/10.1127/njgpm/1984/1984/521
Eiserhardt, K.-H. 1992. Die Acritarchen des Öjlemyrflintes. Palaeontographica Abt. B, 226, 1–132.
Eriksson, M. E., Lindskog, A., Servais, T., Hints, O. & Tonarová, P. 2016. Darriwilian (Middle Ordovician) worms of southern Sweden. GFF, 138, 502–509.
https://doi.org/10.1080/11035897.2016.1181102
Evitt, W. R. 1963. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, I. Proceedings of the National Academy of Sciences, 49, 158–164.
https://doi.org/10.1073/pnas.49.2.158
Finkel, Z. V., Sebbo, J., Feist-Burkhardt, S., Irwin, A. J., Katz, M. E., Schofield, O. M. E., Young, J. R. & Falkowski, P. G. 2007. A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic. Proceedings of the National Academy of Sciences, 104, 20416–20420.
https://doi.org/10.1073/pnas.0709381104
Goldman, D., Sadler, P. M. & Leslie, S. A. 2020. Chapter 20. The Ordovician Period. In Geologic Time Scale 2020. Volume 2 (Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M., eds), pp. 631–694. Elsevier.
https://doi.org/10.1016/B978-0-12-824360-2.00020-6
Grahn, Y. & Nõlvak, J. 2010. Swedish Ordovician Chitinozoa and biostratigraphy: a review and new data. Palaeontographica Abt. B, 283, 1–71.
https://doi.org/10.1127/palb/283/2010/5
Grahn, Y. & Paris, F. 2011. Emergence, biodiversification and extinction of the chitinozoan group. Geological Magazine, 148, 226–236.
https://doi.org/10.1017/S001675681000052X
Guy-Ohlson, D. 1996. Chapter 7B. Prasinophycean algae. In Palynology: Principles and Applications (Jansonius, J. & McGregor, D. C., eds), pp. 181–189. American Association of Stratigraphic Palynologists Foundation.
Hagen-Peter, G., Wang, Y., Hints, O., Prave, A. R. & Lepland, A. 2021. Late diagenetic evolution of Ordovician limestones in the Baltoscandian basin revealed through trace-element mapping and in situ U–Pb dating of calcite. Chemical Geology, 585, 120563.
https://doi.org/10.1016/j.chemgeo.2021.120563
Hairston, N. G., Van Brunt, R. A., Kearns, C. M. & Engstrom, D. R. 1995. Age and survivorship of diapause eggs in a sediment egg bank. Ecology, 76, 1706–1711.
https://doi.org/10.2307/1940704
Harper, D. A. T. 2006. The Ordovician biodiversification: Setting an agenda for marine life. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 148–166.
https://doi.org/10.1016/j.palaeo.2005.07.010
Harper, D. A. T., Cascales-Miñana, B. & Servais, T. 2020. Early Palaeozoic diversifications and extinctions in the marine biosphere: a continuum of change. Geological Magazine, 157, 5–21.
https://doi.org/10.1017/S0016756819001298
Harvey, T. H. P. & Pedder, B. E. 2013. Copepod mandible palynomorphs from the Nolichucky Shale (Cambrian, Tennessee): implications for the taphonomy and recovery of small carbonaceous fossils. PALAIOS, 28, 278–284.
https://doi.org/10.2110/palo.2012.p12-124r
Hegna, T. A. & Lazo-Wasem, E. A. 2010. Branchinecta brushi n. sp. (Branchiopoda: Anostraca: Branchinectidae) from a Volcanic Crater in Northern Chile (Antofagasta Province): A New Altitude Record for Crustaceans. Journal of Crustacean Biology, 30, 445–464.
https://doi.org/10.1651/09-3236.1
Hegna, T. A., Martin, M. J. & Darroch, S. A. F. 2017. Pyritized in situ trilobite eggs from the Ordovician of New York (Lorraine Group): Implications for trilobite reproductive biology. Geology, 45, 199–202.
https://doi.org/10.1130/G38773.1
Heuse, T., Lehnert, O. & Kraft, P. 1996. Organic-walled microfossils Incertae Sedis from the Ordovician of the Argentine Precordillera and Bohemia. Acta Universitatis Carolinae Geologica, 40, 425–439.
Hints, O. 2000. Ordovician eunicid polychaetes of Estonia and surrounding areas: review of their distribution and diversification. Review of Palaeobotany and Palynology, 113, 41–55.
https://doi.org/10.1016/S0034-6667(00)00051-8
Hints, O. & Eriksson, M. E. 2007. Diversification and biogeography of scolecodont-bearing polychaetes in the Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 95–114.
https://doi.org/10.1016/j.palaeo.2006.02.029
Hints, O., Delabroye, A., Nõlvak, J., Servais, T., Uutela, A. & Wallin, Å. 2010. Biodiversity patterns of Ordovician marine microphytoplankton from Baltica: Comparison with other fossil groups and sea-level changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 294, 161–173.
https://doi.org/10.1016/j.palaeo.2009.11.003
Hints, O., Viira, V. & Nõlvak, J. 2012. Darriwilian (Middle Ordovician) conodont biostratigraphy in NW Estonia. Estonian Journal of Earth Sciences, 61, 210–226.
https://doi.org/10.3176/earth.2012.4.03
Hints, O., Martma, T., Männik, P., Nõlvak, J., Põldvere, A., Shen, Y. & Viira, V. 2014. New data on Ordovician stable isotope record and conodont biostratigraphy from the Viki reference drill core, Saaremaa Island, western Estonia. GFF, 136, 100–104.
https://doi.org/10.1080/11035897.2013.873989
Hints, O., Antonovitš, L., Bauert, G., Nestor, V., Nõlvak, J. & Tammekänd, M. 2018. CHITDB: a database for documenting and analysing diversification of Ordovician– Silurian chitinozoans in the Baltic region. Lethaia, 51, 218–227.
https://doi.org/10.1111/let.12249
Kiipli, E., Kiipli, T., Kallaste, T. & Ainsaar, L. 2010. Distribution of phosphorus in the Middle and Upper Ordovician Baltoscandian carbonate palaeobasin. Estonian Journal of Earth Sciences, 59, 247–255.
https://doi.org/10.3176/earth.2010.4.01
Kozłowski, R. 1959. Un microfossile énigmatique. Acta Palaeontologica Polonica, 4, 273–277.
Kozłowski, R. 1965. Oeufs fossiles des Céphalopodes? Acta Palaeontologica Polonica, 10, 3–9.
Kröger, B. 2012. The “Vaginaten”: the dominant cephalopods of the Baltoscandian Mid Ordovician endocerid limestone. GFF, 134, 115–132.
https://doi.org/10.1080/11035897.2012.691897
Kröger, B., Franeck, F. & Rasmussen, C. M. Ø. 2019. The evolutionary dynamics of the early Palaeozoic marine biodiversity accumulation. Proceedings of the Royal Society B: Biological Sciences, 286, 20191634.
https://doi.org/10.1098/rspb.2019.1634
Laptikhovsky, V., Nikolaeva, S. & Rogov, M. 2018. Cephalopod embryonic shells as a tool to reconstruct reproductive strategies in extinct taxa: Cephalopod reproductive strategies. Biological Reviews, 93, 270–283.
https://doi.org/10.1111/brv.12341
Liang, Y., Hints, O., Luan, X., Tang, P., Nõlvak, J. & Zhan, R. 2018. Lower and Middle Ordovician chitinozoans from Honghuayuan, South China: Biodiversity patterns and response to environmental changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 500, 95–105.
https://doi.org/10.1016/j.palaeo.2018.04.002
Liang, Y., Bernardo, J., Goldman, D., Nõlvak, J., Tang, P., Wang, W. & Hints, O. 2019. Morphological variation suggests that chitinozoans may be fossils of individual microorganisms rather than metazoan eggs. Proceedings of the Royal Society B: Biological Sciences, 286, 20191270.
https://doi.org/10.1098/rspb.2019.1270
Liang, Y., Hints, O., Tang, P., Cai, C., Goldman, D., Nõlvak, J., Tihelka, E., Pang, K., Bernardo, J. & Wang, W. 2020. Fossilized reproductive modes reveal a protistan affinity of Chitinozoa. Geology, 48, 1200–1204.
https://doi.org/10.1130/G47865.1
Lindskog, A., Costa, M. M., Rasmussen, C. M. Ø., Connelly, J. N. & Eriksson, M. E. 2017. Refined Ordovician timescale reveals no link between asteroid breakup and biodiversification. Nature Communications, 8, 14066.
https://doi.org/10.1038/ncomms14066
Männik, P. & Viira, V. 2012. Ordovician conodont diversity in the northern Baltic. Estonian Journal of Earth Sciences, 61, 1–14.
https://doi.org/10.3176/earth.2012.1.01
Männil, R. 1966. Balti basseini areng ordoviitsiumis [Evolution of the Baltic Basin During the Ordovician]. Valgus Publishers, Tallinn, 200 pp. [in Russian].
Mathur, V. K., Shome, S., Nath, S. & Babu, R. 2014. First record of metazoan eggs and embryos from early Cambrian Chert Member of Deo ka Tibba Formation, Tal Group, Uttarakhand Lesser Himalaya. Journal of the Geological Society of India, 83, 191–197.
https://doi.org/10.1007/s12594-014-0031-4
Meidla, T. 1997. Kunda Stage. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 64–66. Estonian Academy Publishers, Tallinn.
Menezes, M., Branco, S., Miotto, M. C. & Alves-de-Souza, C. 2018. The Genus Alexandrium (Dinophyceae, Dinophyta) in Brazilian Coastal Waters. Frontiers in Marine Science, 5, 1–13.
https://doi.org/10.3389/fmars.2018.00421
Miller, M. A. 1996. Chapter 11. Chitinozoa. In Palynology: Principles and Applications. 1 (Jansonius, J. & McGregor, D. C., eds), pp. 307–336. American Association of Stratigraphic Palynologists Foundation.
Moldowan, J. M. & Talyzina, N. M. 1998. Biogeochemical evidence for dinoflagellate ancestors in the Early Cambrian. Science, 281, 1168–1170.
https://doi.org/10.1126/science.281.5380.1168
Nõlvak, J. & Grahn, Y. 1993. Ordovician chitinozoan zones from Baltoscandia. Review of Palaeobotany and Palynology, 79, 245–269.
https://doi.org/10.1016/0034-6667(93)90025-P
Nõlvak, J., Hints, O. & Männik, P. 2006. Ordovician timescale in Estonia: recent developments. Proceedings of the Estonian Academy of Sciences, Geology, 54, 95–108.
https://doi.org/10.3176/geol.2006.2.02
Nõlvak, J., Liang, Y. & Hints, O. 2019. Early diversification of Ordovician chitinozoans on Baltica: New data from the Jägala waterfall section, northern Estonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 525, 14–24.
https://doi.org/10.1016/j.palaeo.2019.04.002
Paris, F. & Mergl, M. 1984. Arenigian chitinozoans from the Klabava formation, Bohemia. Review of Palaeobotany and Palynology, 43, 33–65.
https://doi.org/10.1016/0034-6667(84)90026-5
Paris, F. & Nõlvak, J. 1999. Biological interpretation and paleobiodiversity of a cryptic fossil group: the ‘Chitinozoan animal’. Geobios, 32, 315–324.
https://doi.org/10.1016/S0016-6995(99)80045-X
Paris, F., Grahn, Y., Nestor, V. & Lakova, I. 1999. A revised chitinozoan classification. Journal of Paleontology, 73, 549–570.
https://doi.org/10.1017/S0022336000032388
Paris, F., Achab, A., Asseline, E., Chen, X.-H., Grahn, Y., Nõlvak, J., Obut, O., Samuelsson, J., Sennikov, N., Vecoli, M., Verniers, J., Wang, X.-F. & Winchester-Seeto, T. 2004. Chitinozoa. In The Great Ordovician Diversification Event (Webby, B. D., Paris, F., Droser, M. & Percival, I., eds), pp. 294–311. Columbia University Press, New York.
https://doi.org/10.7312/webb12678-029
Pärnaste, H., Bergström, J. & Zhiyi, Z. 2013. High resolution trilobite stratigraphy of the Lower–Middle Ordovician Öland Series of Baltoscandia. Geological Magazine, 150, 509–518.
https://doi.org/10.1017/S0016756812000908
Põldvere, A. (ed). 2010. Viki Drill Core. Estonian Geological Sections, Bulletin. 10. Geological Survey of Estonia, Tallinn, 56 pp.
Pyle, L. J., Narbonne, G. M., Nowlan, G. S., Xiao, S. & James, N. P. 2006. Early Cambrian metazoan eggs, embryos, and phosphatic microfossils from northwestern Canada. Journal of Paleontology, 80, 811–825.
https://doi.org/10.1666/0022-3360(2006)80[811:ECMEEA]2.0.CO;2
Rasmussen, C. M. Ø., Ullmann, C. V., Jakobsen, K. G., Lindskog, A., Hansen, J., Hansen, T., Eriksson, M. E., Dronov, A., Frei, R., Korte, C., Nielsen, A. T. & Harper, D. A. T. 2016. Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Scientific Reports, 6, 18884.
https://doi.org/10.1038/srep18884
Rasmussen, C. M. Ø., Kröger, B., Nielsen, M. L. & Colmenar, J. 2019. Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proceedings of the National Academy of Sciences, 116, 7207–7213.
https://doi.org/10.1073/pnas.1821123116
Rubinstein, C. V. & Vajda, V. 2019. Baltica cradle of early land plants? Oldest record of trilete spores and diverse cryptospore assemblages; evidence from Ordovician successions of Sweden. GFF, 141, 181–190.
https://doi.org/10.1080/11035897.2019.1636860
Schmitz, B., Harper, D. A. T., Peucker-Ehrenbrink, B., Stouge, S., Alwmark, C., Cronholm, A., Bergström, S. M., Tassinari, M. & Xiaofeng, W. 2007. Asteroid breakup linked to the Great Ordovician Biodiversification Event. Nature Geoscience, 1, 49–53.
https://doi.org/10.1038/ngeo.2007.37
Schmitz, B., Farley, K. A., Goderis, S., Heck, P. R., Bergström, S. M., Boschi, S., Claeys, P., Debaille, V., Dronov, A., van Ginneken, M., Harper, D. A. T., Iqbal, F., Friberg, J., Liao, S., Martin, E., Meier, M. M. M., Peucker-Ehrenbrink, B., Soens, B., Wieler, R. & Terfelt, F. 2019. An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body. Science Advances, 5, eaax4184.
https://doi.org/10.1126/sciadv.aax4184
Selden, P. A., Huys, R., Stephenson, M. H., Heward, A. P. & Taylor, P. N. 2010. Crustaceans from bitumen clast in Carboniferous glacial diamictite extend fossil record of copepods. Nature Communications, 1, 50.
https://doi.org/10.1038/ncomms1049
Servais, T., Brocke, R., Fatka, O., LeHerisse, A. & Molyneux, S. G. 1996. Value and meaning of the term Acritarch. Acta Universitatis Carolinae Geologica, 40, 631–643.
Servais, T., Owen, A. W., Harper, D. A. T., Kröger, B. & Munnecke, A. 2010. The Great Ordovician Biodiversification Event (GOBE): The palaeoecological dimension. Palaeogeography, Palaeoclimatology, Palaeoecology, 294, 99–119.
https://doi.org/10.1016/j.palaeo.2010.05.031
Servais, T., Martin, R. E. & Nützel, A. 2016. The impact of the ‘terrestrialisation process’ in the late Palaeozoic: pCO2, pO2, and the ‘phytoplankton blackout’. Review of Palaeobotany and Palynology, 224, 26–37.
https://doi.org/10.1016/j.revpalbo.2015.08.010
Shen, Y. & Huang, D. 2008. Extant clam shrimp egg morphology: taxonomy and comparison with other fossil bran- chiopod eggs. Journal of Crustacean Biology, 28, 352–360.
https://doi.org/10.1651/0278-0372(2008)028[0352:ECSEMT]2.0.CO;2
Siveter, D. J., Siveter, D. J., Sutton, M. D. & Briggs, D. E. G. 2007. Brood care in a Silurian ostracod. Proceedings of the Royal Society B: Biological Sciences, 274, 465–469.
https://doi.org/10.1098/rspb.2006.3756
Siveter, D. J., Tanaka, G., Farrell, Ú. C., Martin, M. J., Siveter, D. J. & Briggs, D. E. G. 2014. Exceptionally preserved 450-million-year-old Ordovician ostracods with brood care. Current Biology, 24, 801–806.
https://doi.org/10.1016/j.cub.2014.02.040
Steiner, M., Qian, Y., Li, G., Hagadorn, J. W. & Zhu, M. 2014. The developmental cycles of early Cambrian Olivooidae fam. nov. (?Cycloneuralia) from the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 398, 97–124.
https://doi.org/10.1016/j.palaeo.2013.08.016
Strother, P. K. 1996. Chapter 5. Acritarchs. In Palynology: Principles and Applications (Jansonius, J. & McGregor, D. C., eds), pp. 81–106. American Association of Stratigraphic Palynologists Foundation.
Tammekänd, M., Hints, O. & Nõlvak, J. 2010. Chitinozoan dynamics and biostratigraphy in the Väo Formation (Darriwilian) of the Uuga Cliff, Pakri Peninsula, NW Estonia. Estonian Journal of Earth Sciences, 59, 25–36.
https://doi.org/10.3176/earth.2010.1.02
Toom, U., Vinn, O., Isakar, M., Madison, A. & Hints, O. 2020. Small faecal pellets in Ordovician shelly fossils from Estonia, Baltoscandia. Estonian Journal of Earth Sciences, 69, 1–19.
https://doi.org/10.3176/earth.2020.1
Torsvik, T. H. & Cocks, L. R. M. 2013. Chapter 2. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. Geological Society, London, Memoirs, 38, 5–24.
https://doi.org/10.1144/M38.2
Verniers, J., Nestor, V., Paris, F., Dufka, P., Sutherland, S. & Van Grootel, G. 1995. A global Chitinozoa biozonation for the Silurian. Geological Magazine, 132, 651–666.
https://doi.org/10.1017/S0016756800018896
Webby, B. D., Cooper, R. A., Bergström, S. M. & Paris, F. 2004a. Stratigraphic framework and time slices. In The Great Ordovician Biodiversification Event(Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G., eds), pp. 41–47. Columbia University Press, New York.
https://doi.org/10.7312/webb12678-003
Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G. 2004b. The Great Ordovician Biodiversification Event. Columbia University Press, New York, 484 pp.
https://doi.org/10.7312/webb12678
Winding Hansen, B. 2019. Copepod Embryonic Dormancy: “An Egg Is Not Just an Egg”. The Biological Bulletin, 237, 145–169.
https://doi.org/10.1086/705546
Yin, Z., Zhao, D., Pan, B., Zhao, F., Zeng, H., Li, G., Bottjer, D. J. & Zhu, M. 2018. Early Cambrian animal diapause embryos revealed by X-ray tomography. Geology, 46, 387– 390.
https://doi.org/10.1130/G40081.1
Yin, Z., Sun, W., Liu, P., Zhu, M. & Donoghue, P. C. J. 2020. Developmental biology of Helicoforamina reveals holozoan affinity, cryptic diversity, and adaptation to heterogeneous environments in the early Ediacaran Weng’an biota (Doushantuo Formation, South China). Science Advances, 6, eabb0083.
https://doi.org/10.1126/sciadv.abb0083
Yin, Z. J. & Zhu, M. Y. 2012. New observations of the ornamented Doushantuo embryo fossils from the Ediacaran Weng’an Biota, South China. Bulletin of Geosciences, 87, 171–181.
https://doi.org/10.3140/bull.geosci.1234
Zhang, J. 1998. Middle Ordovician conodonts from the Atlantic Faunal Region and the evolution of key conodont genera. Meddelanden från Stockholms Universitetets Institution för Geologi och Geokemi, 298, 5–27.