Brachiopods are the biological constituents most often used for the delineation of stable C and O isotopic compositions in Palaeozoic sediments. We present C and O isotope data for the Late Ordovician and early Silurian to evaluate the palaeotemperatures and palaeoenvironmental variability in Baltica from bulk rock and brachiopod shells. The studied carbonate rocks and fossils are well preserved in most of the localities as the area has not been affected by substantial tectonic activities or deep burial diagenesis. The δ13C and δ18O values for the samples range from –1.5‰ to 5‰ and from –7‰ to –2‰, respectively. If the isotope signal reflects the original oxygen composition in sea water, the high δ13C and δ18O values could correspond to the colder episodes and vice versa. The Late Ordovician Hirnantian stable carbon isotopic excursion (HICE) is well recognized globally as an eminent glacial isotopic event and has been reported in several sections in the Baltic region. The HICE is observable in the bulk rock carbon stable isotope curves as a very clear gradual rise and a maximum confined to the upper part of the Ärina Formation (Porkuni Regional Stage) in northern Estonia. The rising interval of δ13C in the Ärina Formation may correspond to the early Hirnantian time interval. The peak HICE is followed by a gradual decline in the δ13C values in the basal beds of the Varbola Formation (Juuru Regional Stage). The bulk carbonate δ18O values show a prominent positive excursion in the Hirnantian interval possibly reflecting the global cooling event. The post-glacial latest Ordovician to early Silurian global warming might be responsible for the clear decreasing trend of both the δ18Obulk and δ18Obrach values in the interval of the Juuru Regional Stage in the studied sections. Our study shows that δ18O values revealed from both the brachiopod and bulk rock material of marine Upper Ordovician–lower Silurian carbonates could tentatively be interpreted as reflecting the major temperature trends.
Ainsaar, L. & Meidla, T. 2008. Ordovician carbon isotopes. In Männamaa (F-367) Drill Core (Põldvere, A., ed.), Estonian Geological Sections, 9, 27–29.
Ainsaar, L., Kaljo, D., Martma, T., Meidla, T., Männik, P., Nõlvak, J. & Tinn, O. 2010. Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: a correlation standard and clues to environmental history. Palaeo- geography, Palaeoclimatology, Palaeoecology, 294, 189–201.
https://doi.org/10.1016/j.palaeo.2010.01.003
Ainsaar, L., Männik, P. & Meidla, T. 2014. Stop B2: Eivere quarry. In 4th Annual Meeting of IGCP 591, Estonia, 10–19 June 2014, Abstracts and Field Guide(Bauert, H., Hints, O., Meidla, T. & Männik, P., eds), pp. 178–179. University of Tartu, Tartu.
Ainsaar, L., Truumees, J. & Meidla, T. 2015. The position of the Ordovician–Silurian boundary in Estonia tested by high-resolution δ13C chemostratigraphic correlation. In Chemo- stratigraphy: Concepts, Techniques, and Applications (Ramkumar, M., ed.), pp. 395–412. Elsevier.
https://doi.org/10.1016/B978-0-12-419968-2.00015-7
Ainsaar, L., Meidla, T. & Hints, O. 2019. Carbon isotopic composition of Ordovician carbonates in Baltoscandia: shallow marine facies shifting the δ13Ccarbvalues in different ways. In Contributions: 13th International Symposium on the Ordovician System, Novosibirsk, Russia, July 19–22, 2019 (Obut, O. T., Sennikov, N. V. & Kipriyanova, T. P., eds), pp. 7–8. Publishing House of SB RAS, Novosibirsk.
Azmy, K., Veizer, J., Bassett, M. G. & Copper, P. 1998. Oxygen and carbon isotopic composition of Silurian brachiopods: implications for coeval sea water and glaciations. Geological Society of America Bulletin, 110, 1499–1512.
https://doi.org/10.1130/0016-7606(1998)110<1499:OACICO>2.3.CO;2
Bartlett, R., Elrick, M., Wheeley, J. R., Polyak, V., Desrochers, A. & Asmerom, Y. 2018. Abrupt global-ocean anoxia during the Late Ordovician–early Silurian detected using uranium isotopes of marine carbonates. Proceedings of the National Academy of Sciences, 115, 5896–5901.
https://doi.org/10.1073/pnas.1802438115
Bauert, H., Ainsaar, L., Põldsaar, K. & Sepp, S. 2014. δ13C chemostratigraphy of the Middle and Upper Ordovician succession in the Tartu-453 drillcore, southern Estonia, and the significance of the HICE. Estonian Journal of Earth Sciences, 63, 195–200.
https://doi.org/10.3176/earth.2014.18
Bickert, T., Pätzold, J., Samtleben, C. & Munnecke, A. 1997. Palaeoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochimica et Cosmochimica Acta , 61, 2717–2730.
https://doi.org/10.1016/S0016-7037(97)00136-1
Brand, U., Bitner, M. A., Logan, A., Azmy, K., Crippa, G., Angiolini, L., Colin, P., Griesshaber, E., Harper, E. M., Ruggiero, E. T. & Häussermann, V. 2019. Brachiopod-based oxygen-isotope thermometer: update and review. Rivista Italiana di Paleontologia e Stratigrafia, 125, 775–787.
Brenchley, P. 1995. Environmental changes associated with the “first strike” of the Late Ordovician mass extinction. Modern Geology, 20, 69–72.
Brenchley, P. J. 2004. End Ordovician Glaciation. In The Great Ordovician Biodiversification Event (Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G., eds), pp. 81–83. Columbia University Press.
https://doi.org/10.7312/webb12678-010
Brenchley, P. & Marshall, J. 1999. Relative timing of critical events during the late Ordovician mass extinction – new data from Oslo. Acta Universitatis Carolinae Geologica, 1/2, 187–190.
Brenchley, P., Marshall, J., Carden, G., Robertson, D., Long, D., Meidla, T., Hints, L. & Anderson, T. 1994. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology, 22, 295–298.
https://doi.org/10.1130/0091-7613(1994)022<0295:BAIEFA>2.3.CO;2
Brenchley, P., Marshall, J. & Underwood, C. J. 2001. Do all mass extinctions represent an ecological crisis? Evidence from the Late Ordovician. Geological Journal, 36, 329–340.
https://doi.org/10.1002/gj.880
Brenchley, P., Carden, G., Hints, L., Kaljo, D., Marshall, J., Martma, T., Meidla, T. & Nõlvak, J. 2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geological Society of America Bulletin, 115, 89–104.
https://doi.org/10.1130/0016-7606(2003)115<0089:HRSISO>2.0.CO;2
Chen, X., Rong, J., Fan, J., Zhan, R., Mitchell, C. E., Harper, D. A., Melchin, M. J., Peng, P. A., Finney, S. C. & Wang, X. 2006. The Global Boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System). Episodes, 29, 183–195.
https://doi.org/10.18814/epiiugs/2006/v29i3/004
Cocks, L. R. M. & Torsvik, T. H. 2005. Baltica from the late Precambrian to mid-Paleozoic times: the gain and loss of a terrane’s identity. Earth-Science Reviews, 72, 39–66.
https://doi.org/10.1016/j.earscirev.2005.04.001
Dronov, A. V., Ainsaar, L., Kaljo, D., Meidla, T., Saadre, T. & Einasto, R. 2011. Ordovician of Baltoscandia: facies, sequences and sea-level changes. In Ordovician of the World (Gutierrez-Marco, J. C., Rabano, I. & Garcia-Bellido, D., eds), Cuadernos del Museo Geominero, 14, 143–150.
Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A., Eisenman, I., Hughes, N. C., Tripati, A. K. & Fischer, W. W. 2011. The magnitude and duration of Late Ordovician–Early Silurian glaciation. Science, 331, 903–906.
https://doi.org/10.1126/science.1200803
Finnegan, S., Rasmussen, C. M. & Harper, D. A. 2017. Identifying the most surprising victims of mass extinction events: an example using Late Ordovician brachiopods. Biology Letters, 13, 20170400.
https://doi.org/10.1098/rsbl.2017.0400
Gorjan, P., Kaiho, K., Fike, D. A. & Xu, C. 2012. Carbon- and sulfur-isotope geochemistry of the Hirnantian (Late Ordovician) Wangjiawan (Riverside) section, South China: Global correlation and environmental event interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology, 337, 14–22.
https://doi.org/10.1016/j.palaeo.2012.03.021
Grossman, E. L. 2012. Applying oxygen isotope paleothermometry in deep time. The Paleontological Society Papers, 18, 39–68.
https://doi.org/10.1017/S1089332600002540
Grossman, E. L. & Joachimski, M. M. 2020. Oxygen isotope stratigraphy. In Geologic Time Scale 2020 (Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M., eds), pp. 279–307. Elsevier.
https://doi.org/10.1016/B978-0-12-824360-2.00010-3
Haq, B. U. & Schutter, S. R. 2008. A chronology of Paleozoic sea-level changes. Science, 322, 64–68.
https://doi.org/10.1126/science.1161648
Harper, D. A., Hammarlund, E. U. & Rasmussen, C. M. 2014. End Ordovician extinctions: a coincidence of causes. Gondwana Research, 25, 1294–1307.
https://doi.org/10.1016/j.gr.2012.12.021
Harris, M. T., Sheehan, P. M., Ainsaar, L., Hints, L., Männik, P., Nõlvak, J. & Rubel, M. 2004. Upper Ordovician sequences of western Estonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 210, 135–148.
https://doi.org/10.1016/j.palaeo.2004.02.045
Herbert, T. D., Peterson, L. C., Lawrence, K. T. & Liu, Z. 2010. Tropical ocean temperatures over the past 3.5 million years. Science, 328, 1530–1534.
https://doi.org/10.1126/science.1185435
Hints, L. & Meidla, T. 1997. Porkuni stage. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 85–88. Estonian Academy Publishers, Tallinn.
Hints, L., Hints, O., Kaljo, D., Kiipli, T., Männik, P., Nõlvak, J. & Pärnaste, H. 2010. Hirnantian (latest Ordovician) bio- and chemostratigraphy of the Stirnas-18 core, western Latvia. Estonian Journal of Earth Sciences, 59, 1–24.
https://doi.org/10.3176/earth.2010.1.01
Hints, O., Martma, T., Männik, P., Nõlvak, J., Põldvere, A., Shen, Y. & Viira, V. 2014. New data on Ordovician stable isotope record and conodont biostratigraphy from the Viki reference drill core, Saaremaa Island, western Estonia. GFF, 136, 100–104.
https://doi.org/10.1080/11035897.2013.873989
Hood, A. V. S., Planavsky, N. J., Wallace, M. W. & Wang, X. 2018. The effects of diagenesis on geochemical palaeoredox proxies in sedimentary carbonates. Geochimica et Cosmochimica Acta, 232, 265–287.
https://doi.org/10.1016/j.gca.2018.04.022
Jaanusson, V. 1956. Untersuchungen über den oberordovizischen Lyckholm-Stufenkomplex in Estland. The Bulletin of the Geological Institutions of Uppsala, 36, 369–401.
Jacobsen, S. B. & Kaufman, A. J. 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 161, 37–57.
https://doi.org/10.1016/S0009-2541(99)00080-7
Jones, D. S., Fike, D. A., Finnegan, S., Fischer, W. W., Schrag, D. P. & McCay, D. 2011. Terminal Ordovician carbon isotope stratigraphy and glacioeustatic sea-level change across Anticosti Island (Québec, Canada). GSA Bulletin, 123, 1645–1664.
https://doi.org/10.1130/B30323.1
Kaljo, D., Heinsalu, H., Mens, K., Puura, I. & Viira, V. 1988. Cambrian–Ordovician boundary beds at Tõnismägi, Tallinn, North Estonia. Geological Magazine, 125, 457–463.
https://doi.org/10.1017/S001675680001308X
Kaljo, D., Hints, L., Martma, T. & Nõlvak, J. 2001. Carbon isotope stratigraphy in the latest Ordovician of Estonia. Chemical Geology, 175, 49–59.
https://doi.org/10.1016/S0009-2541(00)00363-6
Kim, S.-T. & O’Neil, J. R. 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61, 3461–3475.
https://doi.org/10.1016/S0016-7037(97)00169-5
Kump, L., Arthur, M., Patzkowsky, M., Gibbs, M., Pinkus, D. & Sheehan, P. 1999. A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology, 152, 173–187.
https://doi.org/10.1016/S0031-0182(99)00046-2
Lea, D. W., Pak, D. K., Peterson, L. C. & Hughen, K. H. 2003. Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science, 301, 1631–1634.
https://doi.org/10.1126/science.1088470
Lu, X., Kendall, B., Stein, H. J., Li, C., Hannah, J. L., Gordon, G. W. & Ebbestad, J. O. R. 2017. Marine redox conditions during deposition of Late Ordovician and Early Silurian organic-rich mudrocks in the Siljan ring district, central Sweden. Chemical Geology, 457, 75–94.
https://doi.org/10.1016/j.chemgeo.2017.03.015
Männik, P., Lehnert, O., Nõlvak, J. & Joachimski, M. M. 2021. Climate changes in the pre-Hirnantian Late Ordovician based on δ18Ophos studies from Estonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 569, 110347.
https://doi.org/10.1016/j.palaeo.2021.110347
Marshall, J. D., Brenchley, P. J., Mason, P., Wolff, G. A., Astini, R. A., Hints, L. & Meidla, T. 1997. Global carbon isotopic events associated with mass extinction and glaciation in the late Ordovician. Palaeogeography, Palaeo- climatology, Palaeoecology, 132, 195–210.
https://doi.org/10.1016/S0031-0182(97)00063-1
Meidla, T., Ainsaar, L. & Hints, O. 2014. The Ordovician System in Estonia. In 4th Annual Meeting of IGCP 591, Estonia, 10–19 June 2014, Abstracts and Field Guide (Bauert, H., Hints, O., Meidla, T. & Männik, P., eds), pp. 116–122. University of Tartu, Tartu.
Meidla, T., Truuver, K., Tinn, O. & Ainsaar, L. 2020. Ostracods of the Ordovician–Silurian boundary beds: Jūrmala core (Latvia) and its implications for Baltic stratigraphy. Estonian Journal of Earth Sciences, 69, 233–247.
https://doi.org/10.3176/earth.2020.20
Munnecke, A., Calner, M., Harper, D. A. & Servais, T. 2010. Ordovician and Silurian sea–water chemistry, sea level, and climate: A synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 296, 389–413.
https://doi.org/10.1016/j.palaeo.2010.08.001
Puura, V. & Vaher, R. 1997. Cover structure. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 167–177. Estonian Academy Publishers, Tallinn.
Radzevičius, S., Spiridonov, A., Brazauskas, A., Norkus, A., Meidla, T. & Ainsaar, L. 2014. Upper Wenlock δ13C chemostratigraphy, conodont biostratigraphy and palaeoecological dynamics in the Ledai-179 drill core (Eastern Lithuania). Estonian Journal of Earth Sciences, 63, 293–299.
https://doi.org/10.3176/earth.2014.33
Rasmussen, C. M. O., Ullmann, C. V., Jakobsen, K. G., Lindskog, A., Hansen, J., Hansen, T., Eriksson, M. E., Dronov, A., Frei, R., Korte, C., Nielsen, A. T. & Harper, D. A. T. 2016. Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Scientific Reports, 6, 18884.
Rong, J., Melchin, M., Williams, S. H., Koren, T. N. & Verniers, J. 2008. Report of the restudy of the defined global stratotype of the base of the Silurian System. Episodes, 31, 315– 318.
https://doi.org/10.18814/epiiugs/2008/v31i3/005
Rõõmusoks, A. 1991. O stratigrafii i faune pogranichnykh sloev pirguskogo i porkuniskogo gorizontov v Severnoj Éstonii [On the stratigraphy and fauna of the boundary beds between the Pirgu and Porkuni stages of North Estonia]. Acta et Commentationes Universitatis Tartuensis, 934, 23–42 [in Russian, with English summary].
Saltzman, M. M. & Thomas, E. 2012. Chapter 11 – carbon isotope stratigraphy. In The Geologic Time Scale 2012 (Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G., eds), pp. 207–232. Elsevier BV, Amsterdam.
https://doi.org/10.1016/B978-0-444-59425-9.00011-1
Saltzman, M. R. & Young, S. A. 2005. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology, 33, 109–112.
https://doi.org/10.1130/G21219.1
Samtleben, C., Munnecke, A., Bickert, T. & Pätzold, J. 2001. Shell succession, assemblage and species dependent effects on the C/O-isotopic composition of brachiopods – examples from the Silurian of Gotland. Chemical Geology, 175, 61–107.
https://doi.org/10.1016/S0009-2541(00)00364-8
Servais, T., Harper, D. A., Munnecke, A., Owen, A. W. & Sheehan, P. M. 2009. Understanding the Great Ordovician Biodiversification Event (GOBE): Influences of palaeogeography, palaeoclimate, or palaeoecology. GSA Today, 19(4), 4–10.
https://doi.org/10.1130/GSATG37A.1
Sheehan, P. M. 2001. The late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences, 29, 331–364.
https://doi.org/10.1146/annurev.earth.29.1.331
Shields, G. A., Carden, G. A., Veizer, J., Meidla, T., Rong, J.-Y. & Li, R.-Y. 2003. Sr, C, and O isotope geochemistry of Ordovician brachiopods: A major isotopic event around the Middle-Late Ordovician transition. Geochimica et Cosmochimica Acta, 67, 2005–2025.
https://doi.org/10.1016/S0016-7037(02)01116-X
Song, H., Wignall, P. B., Song, H., Dai, X. & Chu, D. 2019. Seawater temperature and dissolved oxygen over the past 500 million years. Journal of Earth Science, 30, 236–243.
https://doi.org/10.1007/s12583-018-1002-2
Trotter, J. A., Williams, I. S., Barnes, C. R., Lécuyer, C. & Nicoll, R. S. 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science, 321, 550–554.
https://doi.org/10.1126/science.1155814
Trotter, J. A., Williams, I. S., Barnes, C. R., Männik, P. & Simpson, A. 2016. New conodont δ18O records of Silurian climate change: Implications for environmental and biological events. Palaeogeography, Palaeoclimatology, Palaeoecology, 443, 34–48.
https://doi.org/10.1016/j.palaeo.2015.11.011
Truuver, K., Meidla, T. & Tinn, O. 2021. End-Ordovician ostracod faunal dynamics in the Baltic Palaeobasin. Estonian Journal of Earth Sciences, 70, 1–38.
https://doi.org/10.3176/earth.2021.02
Ullmann, C., Frei, R., Korte, C. & Lüter, C. 2017. Element/Ca, C and O isotope ratios in modern brachiopods: Species-specific signals of biomineralization. Chemical Geology, 460, 15–24.
https://doi.org/10.1016/j.chemgeo.2017.03.034
Valley, J. W. & O’Neil, J. R. 1984. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence. Contributions to Mineralogy and Petrology, 85, 158–173.
https://doi.org/10.1007/BF00371706
Veizer, J., Goddéris, Y. & François, L. M. 2000. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature, 408, 698–701.
https://doi.org/10.1038/35047044
Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G. 2004. The Great Ordovician Biodiversification Event. Columbia University Press, 496 pp.
https://doi.org/10.7312/webb12678
Young, S. A., Benayoun, E., Kozik, N. P., Hints, O., Martma, T., Bergström, S. M. & Owens, J. D. 2020. Marine redox variability from Baltica during extinction events in the latest Ordovician–early Silurian. Palaeogeography, Palaeoclimatology, Palaeoecology, 554, 109792.
https://doi.org/10.1016/j.palaeo.2020.109792