The aim of this study was to create a 3D crustal deformation model for Estonia, based on dense Global Navigation Satellite System (GNSS) data (geodetic points with velocities) and validate the existing models of horizontal and vertical crustal deformations with velocities from Estonian GNSS measurements. The observations performed for at least eight years at Estonian GNSS permanent stations and during the GNSS campaign measurements of 1997, 2008 and 2017 on the Estonian 1st-order geodetic reference network were used as input data. Coordinates of the geodetic points were calculated in the ITRF2008 reference frame using the Precise Point Positioning method. Horizontal and vertical velocities (in the North, East and Up directions) were calculated for a total of 22 GNSS points. Models for horizontal and vertical velocities were calculated using the remove–compute–restore method. The model of glacial isostatic adjustment (GIA) of the Nordic Geodetic Commission NKG2016GIA was used as a reference model. Residual velocities of GNSS points showed a good fit with respect to the reference model. The residual velocities were analysed by geostatistical methods and the prediction surfaces of the residual velocities were modelled. After adding the surface of the residual velocities back to the reference model NKG2016GIA, the modelled surface EST2020VEL was obtained. The obtained model was compared with the up-to-date intraplate deformation model NKG_RF17VEL. It was found that recent Fennoscandian intraplate deformation models NKG2016LU and NKG_RF17VEL fitted well with the Estonian GNSS data. However, both models are systematically shifted with respect to the Estonian GNSS data. For applications in Estonia, it is better to use the fitted model EST2020VEL. The uncertainty of the model is estimated to be lower than ±0.5 mm/a.
Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.
https://doi.org/10.1109/TAC.1974.1100705
Alothman, A. O., Fernandes, R. M., Bos, M. S., Schillak, S. & Elsaka, B. 2016. Angular velocity of Arabian plate from multi-year analysis of GNSS data. Arabian Journal of Geosciences, 9, 529.
https://doi.org/10.1007/s12517-016-2569-5
Altamimi, Z., Collilieux, X. & Métivier, L. 2011. ITRF2008: an improved solution of the international terrestrial reference frame. Journal of Geodesy, 85, 457–473.
https://doi.org/10.1007/s00190-011-0444-4
Altamimi, Z., Métivier, L. & Collilieux, X. 2012. ITRF2008 plate motion model. Journal of Geophysical Research: Solid Earth, 117, B07402.
https://doi.org/10.1029/2011JB008930
Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., Heflin, M., Lu, W., Miller, M., Moore, A. W., Murphy, D., Ries, P., Romans, L., Sibois, A., Sibthorpe, A., Szilagyi, B., Vallisneri, M. & Willis, P. 2020. GipsyX/RTGx, a new tool set for space geodetic operations and research. Advances in Space Research, 66, 469–489.
https://doi.org/10.1016/j.asr.2020.04.015
Bitharis, S., Ampatzidis, D. & Pikridas, C. 2017. An optimal geodetic dynamic reference frame realization for Greece: Methodology and application. Annals of Geophysics, 60(2), S0221.
https://doi.org/10.4401/ag-7292
Böhm, J., Werl, B. & Schuh, H. 2006. Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data. Journal of Geophysical Research: Solid Earth, 111, B02406.
https://doi.org/10.1029/2005JB003629
Bos, M. S., Fernandes, R. M. S., Williams, S. D. P. & Bastos, L. 2013. Fast error analysis of continuous GNSS observations with missing data. Journal of Geodesy, 87, 351–360.
https://doi.org/10.1007/s00190-012-0605-0
Carrere, L., Lyard, F., Cancet, M., Guillot, A. & Picot, N. 2016. FES 2014, a new tidal model – Validation results and perspectives for improvements. In Proceedings of the ESA Living Planet Symposium, pp. 9–13.
Dong, D., Fang, P., Bock, Y., Webb, F., Prawirodirdjo, L., Kedar, S. & Jamason, P. 2006. Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. Journal of Geophysical Research: Solid Earth, 111, B03405.
https://doi.org/10.1029/2005JB003806
Ellmann, A., Pihlak, P. & Kollo, K. 2008. Kõrgtäpsed GPS-mõõtmised riigi geodeetilise põhivõrgu aluspunktidel 2008. aasta suvel [GPS remeasurement campaign on national geodetic points in the summer of 2008]. Geodeet, 37(61), 7–12 [in Estonian].
Forsberg, R. & Tscherning, C. C. 2008. An Overview Manual for the GRAVSOFT Geodetic Gravity Field Modelling Programs. DTU-Space, 75 pp.
Gandolfi, S., Tavasci, L. & Poluzzi, L. 2017. Study on GPS–PPP precision for short observation sessions. GPS Solutions, 21, 887–896.
https://doi.org/10.1007/s10291-016-0575-4
Häkli, P., Lidberg, M., Jivall, L., Steffen, H., Kierulf, H., Ågren, J., Vestøl, O. & Lahtinen, S. 2019. New horizontal intraplate velocity model for Nordic and Baltic countries. In Geospatial Information for a Smarter Life and Environmental Resilience, pp. 1–19. FIG, Hanoi, Vietnam.
Hastie, T., Tibshirani, R. & Friedman, J. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media, 763 pp.
He, X., Montillet, J.-P., Fernandes, R., Bos, M., Yu, K., Hua, X. & Jiang, W. 2017. Review of current GPS methodologies for producing accurate time series and their error sources. Journal of Geodynamics, 106, 12–29.
https://doi.org/10.1016/j.jog.2017.01.004
Holdahl, S. H. 1978. Models for extracting vertical crustal movements from leveling data. In Proceedings of the GEOP Conference “Applications of Geodesy to Geodynamics”. October 2–5, 1978, pp. 183–190. Ohio State University, Columbus, Ohio.
Hulisz, P., Piernik, A., Mantilla-Contreras, J. & Elvisto, T. 2016. Main driving factors for seacoast vegetation in the Southern and Eastern Baltic. Wetlands, 36, 909–919.
https://doi.org/10.1007/s13157-016-0803-2
Jackson, D. A. & Chen, Y. 2004. Robust principal component analysis and outlier detection with ecological data. Environmetrics: The Official Journal of the International Environmetrics Society, 15, 129–139.
https://doi.org/10.1002/env.628
Jevrejeva, S., Rüdja, A. & Mäkinen, J. 2002. Postglacial rebound in Fennoscandia: new results from Estonian tide gauges. In Gravity Geoid and Geodynamics 2000 (Sideris, M. G., ed.), pp. 193–198. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-3-662-04827-6_32
Johnston, G., Riddell, A. & Hausler, G. 2017. The International GNSS Service. In Springer Handbook of Global Navigation Satellite Systems, Springer Handbooks (Teunissen, P. J. G. & Montenbruck, O., eds), pp. 967–982. Springer International Publishing, Cham.
https://doi.org/10.1007/978-3-319-42928-1_33
Kall, T., Oja, T. & Tänavsuu, K. 2014. Postglacial land uplift in Estonia based on four precise levelings. Tectonophysics, 610, 25–38.
https://doi.org/10.1016/j.tecto.2013.10.002
Kall, T., Oja, T., Kollo, K. & Liibusk, A. 2019. The noise properties and velocities from a time-series of Estonian permanent GNSS stations. Geosciences, 9(5), 1–23.
https://doi.org/10.3390/geosciences9050233
Kasper, J. F., Jr. 1971. A second‐order Markov gravity anomaly model. Journal of Geophysical Research, 76, 7844–7849.
https://doi.org/10.1029/JB076i032p07844
Kierulf, H. P. 2017. Analysis strategies for combining continuous and episodic GNSS for studies of neo-tectonics in Northern-Norway. Journal of Geodynamics, 109, 32–40.
https://doi.org/10.1016/j.jog.2017.07.002
Kierulf, H. P., Steffen, H., Simpson, M. J. R., Lidberg, M., Wu, P. & Wang, H. 2014. A GPS velocity field for Fennoscandia and a consistent comparison to glacial isostatic adjustment models. Journal of Geophysical Research B: Solid Earth, 119, 6613–6629.
https://doi.org/10.1002/2013JB010889
Kierulf, H. P., Valsson, G., Evers, K., Lidberg, M., Häkli, P., Prizginiene, D., Hjelle, G. A., Vestøl, O., Håkansson, M. & Knudsen, P. 2019. Towards a dynamic reference frame in Iceland. Geophysica, 54, 3–17.
Kollo, K., Metsar, J. & Ellmann, A. 2017. Riigi geodeetilise võrgu I klassi kordusmõõtmised 2017 [Remeasurement campaign in 2017 on 1st-order points of the national geodetic network]. Geodeet, 47(71), 19–23 [in Estonian].
Kruusla, K. 2019. Maakoore liikumised riikliku geodeetilise võrgu GNSS kordusmõõtmistest [Movements of the Earth’s Crust in Estonia Based on GNSS Measurement Campaigns of the National Geodetic Reference Network]. Master’s Thesis, Eesti Maaülikool, Tartu, 110 pp.
Lahtinen, S., Jivall, L., Häkli, P., Kall, T., Kollo, K., Kosenko, K., Galinauskas, K., Prizginiene, D., Tangen, O. & Weber, M. 2019. Densification of the ITRF2014 position and velocity solution in the Nordic and Baltic countries. GPS Solutions, 23, 95.
https://doi.org/10.1007/s10291-019-0886-3
Li, Y., Chen, C., Fang, R. & Yi, L. 2019. Accuracy enhancement of high-rate GNSS positions using a complete ensemble empirical mode decomposition-based multiscale multiway PCA. Journal of Asian Earth Sciences, 169, 67–78.
https://doi.org/10.1016/j.jseaes.2018.07.025
Lidberg, M., Johansson, J. M., Scherneck, H.-G. & Davis, J. L. 2007. An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia. Journal of Geodesy, 81, 213–230.
https://doi.org/10.1007/s00190-006-0102-4
Metsar, J., Kollo, K. & Ellmann, A. 2018. Modernization of the Estonian national GNSS reference station network. Geodesy and Cartography, 44, 55–62.
https://doi.org/10.3846/gac.2018.2023
Metsar, J., Kollo, K., Ellmann, A., Rüdja, A. & Pihlak, P. 2019. Multi-epoch GNSS campaigns of the national geodetic network in Estonia. Geophysica, 54, 51–60.
Minasny, B., McBratney, A. B. & Whelan, B. M. 2005. VESPER User Manual. Version 1.6. Australian Centre for Precision Agriculture, 25 pp.
https://doi.org/10.1007/s11119-005-0681-8
Montillet, J.-P. & Bos, M. S. (eds). 2019. Geodetic Time Series Analysis in Earth Sciences. Springer, 443 pp.
https://doi.org/10.1007/978-3-030-21718-1
Moritz, H. 1980. Advanced Physical Geodesy. Wichmann, Karlsruhe; Abacus Press, Tunbridge, Wells, Kent, 500 pp.
Petit, G. & Luzum, B. (eds). 2010. IERS Conventions (2010). IERS Technical Note, 36, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 179 pp.
Poutanen, M. & Häkli, P. 2018. Future of National Reference Frames – from static to kinematic? Geodesy and Cartography, 67, 119–129.
Rebischung, P., Griffiths, J., Ray, J., Schmid, R., Collilieux, X. & Garayt, B. 2012. IGS08: the IGS realization of ITRF2008. GPS Solutions, 16, 483–494.
https://doi.org/10.1007/s10291-011-0248-2
Rosentau, A., Muru, M., Gauk, M., Oja, T., Liibusk, A., Kall, T., Karro, E., Roose, A., Sepp, M. & Tammepuu, A. 2017. Sea-level change and flood risks at Estonian coastal zone. In Coastline Changes of the Baltic Sea from South to East (Harff, J., Furmanczyk, K. & Von Storch, H., eds), pp. 363–388. Springer.
https://doi.org/10.1007/978-3-319-49894-2_16
Rüdja, A. 1999. A new ETRS89 system for Estonia. In Report on the Symposium of the IAG Subcommission for the European Reference Frame (EUREF) Held in Prague 2–5 June 1999. EUREF Publication No. 8, München.
Rüdja, A. 2004. Geodetic Datums, Reference Systems and Geodetic Networks in Estonia. Doctoral dissertation, University of Helsinki, Helsinki, 331 pp.
Sjöberg, L. E. 2005. A discussion on the approximations made in the practical implementation of the remove–compute–restore technique in regional geoid modelling. Journal of Geodesy, 78, 645–653.
https://doi.org/10.1007/s00190-004-0430-1
Suursaar, Ü. & Kall, T. 2018. Decomposition of relative sea level variations at tide gauges using results from four Estonian precise levelings and uplift models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 1966–1974.
https://doi.org/10.1109/JSTARS.2018.2805833
Tarayoun, A., Mazzotti, S., Craymer, M. & Henton, J. 2018. Structural inheritance control on intraplate present-day deformation: GPS strain rate variations in the Saint Lawrence Valley, Eastern Canada. Journal of Geophysical Research: Solid Earth, 123, 7004–7020.
https://doi.org/10.1029/2017JB015417
Teferle, F. N., Williams, S. D. P., Kierulf, H. P., Bingley, R. M. & Plag, H.-P. 2008. A continuous GPS coordinate time series analysis strategy for high-accuracy vertical land movements. Physics and Chemistry of the Earth, Parts A/B/C, 33, 205–216.
https://doi.org/10.1016/j.pce.2006.11.002
Vallner, L., Sildvee, H. & Torim, A. 1988. Recent crustal movements in Estonia. Journal of Geodynamics, 9, 215–223.
https://doi.org/10.1016/S0264-3707(88)80066-8
Vestøl, O., Ågren, J., Steffen, H., Kierulf, H. & Tarasov, L. 2019. NKG2016LU: a new land uplift model for Fennoscandia and the Baltic Region. Journal of Geodesy, 93, 1759–1779.
https://doi.org/10.1007/s00190-019-01280-8
Vilumaa, K., Ratas, U., Tõnisson, H., Kont, A. & Pajula, R. 2017. Multidisciplinary approach to studying the formation and development of beach-ridge systems on non-tidal uplifting coasts in Estonia. Boreal Environment Research, 22, 67–81.
Wdowinski, S., Bock, Y., Zhang, J., Fang, P. & Genrich, J. 1997. Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. Journal of Geophysical Research: Solid Earth, 102, 18057–18070.
https://doi.org/10.1029/97JB01378
Whelan, B. M., McBratney, A. B. & Minasny, B. 2002. Vesper 1.5 – spatial prediction software for precision agriculture. In Precision Agriculture, Proceedings of the 6th International Conference on Precision Agriculture (Robert, P. C., Rust, R. H. & Larson, W. E., eds), pp. 1–14. ASA/CSSA/SSSA, Madison, WI, USA.
Wu, D., Yan, H. & Shen, Y. 2017. TSAnalyzer, a GNSS time series analysis software. GPS Solutions, 21, 1389–1394.
https://doi.org/10.1007/s10291-017-0637-2
Zhelnin, G. 1966. On the recent movements of the Earth’s surface in the Estonian SSR. Annales Academiae Scientiarum Fennicae, 90, 489–493.
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M. & Webb, F. H. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102, 5005–5017.
https://doi.org/10.1029/96JB03860