The Estonian energy industry relies on local calcareous oil shale that is used to produce the majority of the country’s electricity, but the shale is also used for shale oil retorting. The solid residues remaining after combustion are upon open air deposition potentially capable of binding part of the released CO2 by carbonation of reactive Ca-phases. We studied the isotopic composition of authigenic carbonate phases in an alkaline Ca-rich oil shale ash waste deposit accumulated over nearly 50 years to reveal the carbonation mechanisms and the sources of CO2 required for carbonation. The secondary carbonate phases forming in oil shale waste deposits have low δ13C and δ18O values characterized by δ13CV-PDB values between -12‰ and -24‰ and δ18OV-PDB between -8‰ and -15‰. The negative isotopic composition of carbonate carbon seemingly points to a contribution of CO2 derived from the degradation of residual organic material, potentially present in shale retorting ashes. The low δ13C value of carbonate is rather caused by the non-equilibrium fractionation effects during diffusion and hydroxylation reactions of CO2 in hyperalkaline conditions under a limited CO2 diffusion rate.
Anoop, A., Prasad, S., Plessen, B., Basavaiah, N., Gaye, B., Naumann, R., Menzel, P., Weise, S. & Brauer, A. 2013. Palaeoenvironmental implications of evaporative gaylussite crystals from Lonar Lake, central India. Journal of Quaternary Science, 28, 349–359.
https://doi.org/10.1002/jqs.2625
Arp, G., Kolepka, C., Simon, K., Karius, V., Nolte, N. & Hansen, B. T. 2013. New evidence for persistent impact-generated hydrothermal activity in the Miocene Ries impact structure, Germany. Meteoritics & Planetary Science, 48, 2491–2516.
https://doi.org/10.1111/maps.12235
Arp, G., Hansen, B. T., Pack, A., Reimer, A., Schmidt, B. C., Simon, K. & Jung, D. 2016. The soda lake–mesosaline halite lake transition in the Ries impact crater basin (drilling Löpsingen 2012, Miocene, southern Germany). Facies, 63, Article 1, 1–20.
https://doi.org/10.1007/s10347-016-0483-7
Bauert, H. & Kattai, V. 1997. Kukersite oil shale. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 313–327. Estonian Academy Publishers, Tallinn.
Bityukova, L., Mõtlep, R. & Kirsimäe, K. 2010. Composition of oil shale ashes from pulverized firing and circulating fluidized-bed boiler in Narva Thermal Power Plants, Estonia. Oil Shale, 27, 339–353.
https://doi.org/10.3176/oil.2010.4.07
Buchner, E., Schwarz, W. H., Schmieder, M. & Trieloff, M. 2010. Establishing a 14.6 ± 0.2 Ma age for the Nördlinger Ries impact (Germany) – A prime example for concordant isotopic ages from various dating materials. Meteoritics & Planetary Science, 45, 662–674.
https://doi.org/10.1111/j.1945-5100.2010.01046.x
Campbell, B. J., Stein, J. L. & Cary, S. C. 2003. Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Applied and Environmental Microbiology, 69, 5070–5078.
https://doi.org/10.1128/AEM.69.9.5070-5078.2003
Centore, P. 2013. Conversions Between the Munsell and sRGB Colour Systems. 64 pp.,
http://munsellcolourscienceforpainters.com/ConversionsBetweenMunsellAndsRGBsystems.pdf [accessed 18 May 2020].
Chan, E. C. S. 2003. Microbial nutrition and basic metabolism. In Handbook of Water and Wastewater Microbiology (Mara, D. & Horan, N., eds), pp. 3–33. Academic Press, London.
https://doi.org/10.1016/B978-012470100-7/50002-9
Clark, I. D., Fontes, J.-C. & Fritz, P. 1992. Stable isotope disequilibria in travertine from high pH waters: Laboratory investigations and field observations from Oman. Geochimica et Cosmochimica Acta, 56, 2041–2050.
https://doi.org/10.1016/0016-7037(92)90328-G
Cowden, C. & Shefferson, R. 2011. Microbial community succession in Estonian oil-shale ash hills. In Abstracts of the 96th ESA Annual Meeting, Austin, Texas.
https://eco.confex.com/eco/2011/webprogram/Paper30522.html [accessed 18 May 2020].
Dietzel, M., Usdowski, E. & Hoefs, J. 1992. Chemical and 13C/12C- and 18O/16O-isotope evolution of alkaline drainage waters and the precipitation of calcite. Applied Geochemistry, 7, 177–184.
https://doi.org/10.1016/0883-2927(92)90035-2
Emrich, K., Ehhalt, D. H. & Vogel, J. C. 1970. Carbon isotope fractionation during the precipitation of calcium carbonate. Earth and Planetary Science Letters, 8, 363–371.
https://doi.org/10.1016/0012-821X(70)90109-3
Fléhoc, C., Girard, J.-P., Piantone, P. & Bodénan, F. 2006. Stable isotope evidence for the atmospheric origin of CO2 involved in carbonation of MSWI bottom ash. Applied Geochemistry, 21, 2037–2048.
https://doi.org/10.1016/j.apgeochem.2006.07.011
Geng, A. 2015. Munsell Color Palette.
http://pteromys.melonisland.net/munsell/ [accessed 28 October 2019].
Grant, W. D. 2006. Alkaline environments and biodiversity. In Extremophiles (Gerday, C. & Glansdorff, N., eds), pp. 1–20. Encyclopedia of Life Support Systems (EOLSS), EOLSS Publishers, Oxford, UK.
Grossman, E. L. 2012. Applying oxygen isotope paleothermometry in deep time. The Paleontological Society Papers, 18, 39–68.
https://doi.org/10.1017/S1089332600002540
Hays, P. D. & Grossman, E. L. 1991. Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate. Geology, 19, 441–444.
https://doi.org/10.1130/0091-7613(1991)019<0441:OIIMCC>2.3.CO;2
Hotta, A., Parkkonen, R., Hiltunen, M., Arro, H., Loosaar, J., Parve, T., Pihu, T., Prikk, A. & Tiikma, T. 2005. Experience of Estonian oil shale combustion based on CFB technology at Narva Power Plants. Oil Shale, 22, 381–397.
Kann, J., Elenurm, A., Rohtla, I., Golubev, N., Kaidalov, A. & Kindorkin, B. 2004. About thermal low-temperature processing of oil shale by solid heat carrier method. Oil Shale, 21, 195–203.
Keeling, R. F., Graven, H. D., Welp, L. R., Resplandy, L., Bi, J., Piper, S. C., Sun, Y., Bollenbacher, A. & Meijer, H. A. J. 2017. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proceedings of the National Academy of Sciences, 114, 10361–10366.
https://doi.org/10.1073/pnas.1619240114
Koel, M. 1999. Estonian oil shale. Oil Shale Extra.
Konist, A., Pihu, T., Neshumayev, D. & Siirde, A. 2013. Oil shale pulverized firing: boiler efficiency, ash balance and flue gas composition. Oil Shale, 30, 6–18.
https://doi.org/10.3176/oil.2013.1.02
Konist, A., Maaten, B., Loo, L., Neshumayev, D. & Pihu, T. 2016. Mineral sequestration of CO2 by carbonation of Ca-rich oil shale ash in natural conditions. Oil Shale, 33, 248–259.
https://doi.org/10.3176/oil.2016.3.04
Krishnamurthy, R. V., Schmitt, D., Atekwana, E. A. & Baskaran, M. 2003. Isotopic investigations of carbonate growth on concrete structures. Applied Geochemistry, 18, 435–444.
https://doi.org/10.1016/S0883-2927(02)00089-6
Kuusik, R., Uibu, M. & Kirsimäe, K. 2005. Characterization of oil shale ashes formed at industrial scale boilers. Oil Shale, 22, 407–420.
Leben, K., Mõtlep, R., Paaver, P., Konist, A., Pihu, T., Paiste, P., Heinmaa, I., Nurk, G., Anthony, E. J. & Kirsimäe, K. 2019. Long-term mineral transformation of Ca-rich oil shale ash waste. Science of the Total Environment, 658, 1404–1415.
https://doi.org/10.1016/j.scitotenv.2018.12.326
Leleu, T., Chavagnac, V., Delacour, A., Noiriel, C., Ceuleneer, G., Aretz, M., Rommevaux, C. & Ventalon, S. 2016. Travertines associated with hyperalkaline springs: evaluation as a proxy for paleoenvironmental conditions and sequestration of atmospheric CO2. Journal of Sedimentary Research, 86, 1328–1343.
https://doi.org/10.2110/jsr.2016.79
Létolle, R., Gégout, P., Rafai, N. & Revertegat, E. 1992. Stable isotopes of carbon and oxygen for the study of carbonation/decarbonation processes in concretes. Cement and Concrete Research, 22, 235–240.
https://doi.org/10.1016/0008-8846(92)90061-Y
Liira, M., Kirsimäe, K., Kuusik, R. & Mõtlep, R. 2009. Transformation of calcareous oil-shale circulating fluidized-bed combustion boiler ashes under wet conditions. Fuel, 88, 712–718.
https://doi.org/10.1016/j.fuel.2008.08.012
L´vov, B. V. 2007. Thermal Decomposition of Solids and Melts. Springer, Netherlands, 247 pp.
Macleod, G., Fallick, A. E. & Hall, A. J. 1991. The mechanism of carbonate growth on concrete structures, as elucidated by carbon and oxygen isotope analyses. Chemical Geology: Isotope Geoscience Section, 86, 335–343.
https://doi.org/10.1016/0168-9622(91)90015-O
Mickler, P. J., Stern, L. A. & Banner, J. L. 2006. Large kinetic isotope effects in modern speleothems. Geological Society of America Bulletin, 118, 65–81.
https://doi.org/10.1130/B25698.1
Mõtlep, R., Sild, T., Puura, E. & Kirsimäe, K. 2010. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments. Journal of Hazardous Materials, 184, 567–573.
https://doi.org/10.1016/j.jhazmat.2010.08.073
Neshumayev, D., Pihu, T., Siirde, A., Järvik, O. & Konist, A. 2019. Solid heat carrier oil shale retorting technology with integrated CFB technology. Oil Shale, 36, 99–113.
https://doi.org/10.3176/oil.2019.2S.02
Paaver, P., Paiste, P., Mõtlep, R. & Kirsimäe, K. 2017. Self-cementing properties and alkali activation of Enefit280 solid heat carrier retorting ash. Oil Shale, 34, 263–278.
https://doi.org/10.3176/oil.2017.3.05
Pihu, T., Konist, A., Puura, E., Liira, M. & Kirsimäe, K. 2019. Properties and environmental impact of oil shale ash landfills. Oil Shale, 36, 257–270.
https://doi.org/10.3176/oil.2019.2.01
Punning, J.-M., Toots, M. & Vaikmäe, R. 1987. Oxygen-18 in Estonian natural waters. Isotopenpraxis Isotopes in Environmental and Health Studies, 23, 232–234.
https://doi.org/10.1080/10256018708623797
Sedman, A., Talviste, P. & Kirsimäe, K. 2012. The study of hydration and carbonation reactions and corresponding changes in the physical properties of co-deposited oil shale ash and semicoke wastes in a small-scale field experiment. Oil Shale, 29, 279–294.
https://doi.org/10.3176/oil.2012.3.07
Stansell, N. D., Klein, E. S., Finkenbinder, M. S., Fortney, C. S., Dodd, J. P., Terasmaa, J. & Nelson, D. B. 2017. A stable isotope record of Holocene precipitation dynamics in the Baltic region from Lake Nuudsaku, Estonia. Quaternary Science Reviews, 175, 73–84.
https://doi.org/10.1016/j.quascirev.2017.09.013
Swart, P. K. 2015. The geochemistry of carbonate diagenesis: The past, present and future. Sedimentology, 62, 1233–1304.
https://doi.org/10.1111/sed.12205
Talviste, P., Sedman, A., Mõtlep, R. & Kirsimäe, K. 2013. Self-cementing properties of oil shale solid heat carrier retorting residue. Waste Management & Research, 31, 641–647.
https://doi.org/10.1177/0734242X13482033
Teboul, P.-A., Durlet, C., Gaucher, E. C., Virgone, A., Girard, J.-P., Curie, J., Lopez, B. & Camoin, G. F. 2016. Origins of elements building travertine and tufa: New perspectives provided by isotopic and geochemical tracers. Sedimentary Geology, 334, 97–114.
https://doi.org/10.1016/j.sedgeo.2016.01.004
Uibu, M., Kuusik, R. & Veskimäe, H. 2008. Seasonal binding of atmospheric CO2 by oil shale ash. Oil Shale, 25, 254–266.
https://doi.org/10.3176/oil.2008.2.07
Whiticar, M. J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161, 291–314.
https://doi.org/10.1016/S0009-2541(99)00092-3