ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Geochemical study of stable carbon and oxygen isotopes in landfilled Ca-rich oil shale ash; pp. 134–142
PDF | 10.3176/earth.2020.09

Authors
Kristjan Leben, Riho Mõtlep, Peeter Paaver, Alar Konist, Tõnu Pihu, Kalle Kirsimäe
Abstract

The Estonian energy industry relies on local calcareous oil shale that is used to produce the majority of the country’s electricity, but the shale is also used for shale oil retorting. The solid residues remaining after combustion are upon open air deposition potentially capable of binding part of the released CO2 by carbonation of reactive Ca-phases. We studied the isotopic composition of authigenic carbonate phases in an alkaline Ca-rich oil shale ash waste deposit accumulated over nearly 50 years to reveal the carbonation mechanisms and the sources of CO2 required for carbonation. The secondary carbonate phases forming in oil shale waste deposits have low δ13C and δ18O values characterized by δ13CV-PDB values between -12‰ and -24‰ and δ18OV-PDB between -8‰ and -15‰. The negative isotopic composition of carbonate carbon seemingly points to a contribution of CO2 derived from the degradation of residual organic material, potentially present in shale retorting ashes. The low δ13C value of carbonate is rather caused by the non-equilibrium fractionation effects during diffusion and hydroxylation reactions of CO2 in hyperalkaline conditions under a limited CO2 diffusion rate.

References

Anoop, A., Prasad, S., Plessen, B., Basavaiah, N., Gaye, B., Naumann, R., Menzel, P., Weise, S. & Brauer, A. 2013. Palaeoenvironmental implications of evaporative gay­lussite crystals from Lonar Lake, central India. Journal of Quaternary Science28, 349–359. 
https://doi.org/10.1002/jqs.2625

Arp, G., Kolepka, C., Simon, K., Karius, V., Nolte, N. & Hansen, B. T. 2013. New evidence for persistent impact-generated hydrothermal activity in the Miocene Ries impact structure, Germany. Meteoritics & Planetary Science48, 2491–2516.
https://doi.org/10.1111/maps.12235

Arp, G., Hansen, B. T., Pack, A., Reimer, A., Schmidt, B. C., Simon, K. & Jung, D. 2016. The soda lake–mesosaline halite lake transition in the Ries impact crater basin (drilling Löpsingen 2012, Miocene, southern Germany). Facies63, Article 1, 1–20.
https://doi.org/10.1007/s10347-016-0483-7

Bauert, H. & Kattai, V. 1997. Kukersite oil shale. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 313–327. Estonian Academy Publishers, Tallinn. 

Bityukova, L., Mõtlep, R. & Kirsimäe, K. 2010. Composition of oil shale ashes from pulverized firing and circulating fluidized-bed boiler in Narva Thermal Power Plants, Estonia. Oil Shale27, 339–353.
https://doi.org/10.3176/oil.2010.4.07

Buchner, E., Schwarz, W. H., Schmieder, M. & Trieloff, M. 2010. Establishing a 14.6 ± 0.2 Ma age for the Nördlinger Ries impact (Germany) – A prime example for concordant isotopic ages from various dating materials. Meteoritics & Planetary Science45, 662–674.
https://doi.org/10.1111/j.1945-5100.2010.01046.x

Campbell, B. J., Stein, J. L. & Cary, S. C. 2003. Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Applied and Environmental Microbiology69, 5070–5078.
https://doi.org/10.1128/AEM.69.9.5070-5078.2003

Centore, P. 2013. Conversions Between the Munsell and sRGB Colour Systems. 64 pp., 
http://munsellcolourscienceforpainters.com/ConversionsBetweenMunsellAndsRGBsystems.pdf [accessed 18 May 2020]. 

Chan, E. C. S. 2003. Microbial nutrition and basic metabolism. In Handbook of Water and Wastewater Microbiology (Mara, D. & Horan, N., eds), pp. 3–33. Academic Press, London. 
https://doi.org/10.1016/B978-012470100-7/50002-9

Clark, I. D., Fontes, J.-C. & Fritz, P. 1992. Stable isotope disequilibria in travertine from high pH waters: Laboratory investigations and field observations from Oman. Geochimica et Cosmochimica Acta56, 2041–2050.
https://doi.org/10.1016/0016-7037(92)90328-G

Cowden, C. & Shefferson, R. 2011. Microbial community succession in Estonian oil-shale ash hills. In Abstracts of the 96th ESA Annual Meeting, Austin, Texas.
https://eco.confex.com/eco/2011/webprogram/Paper30522.html [accessed 18 May 2020].

Dietzel, M., Usdowski, E. & Hoefs, J. 1992. Chemical and 13C/12C- and 18O/16O-isotope evolution of alkaline drainage waters and the precipitation of calcite. Applied Geochemistry7, 177–184.
https://doi.org/10.1016/0883-2927(92)90035-2

Emrich, K., Ehhalt, D. H. & Vogel, J. C. 1970. Carbon isotope fractionation during the precipitation of calcium carbonate. Earth and Planetary Science Letters8, 363–371.
https://doi.org/10.1016/0012-821X(70)90109-3

Fléhoc, C., Girard, J.-P., Piantone, P. & Bodénan, F. 2006. Stable isotope evidence for the atmospheric origin of CO2 involved in carbonation of MSWI bottom ash. Applied Geochemistry21, 2037–2048.
https://doi.org/10.1016/j.apgeochem.2006.07.011

Geng, A. 2015. Munsell Color Palette
http://pteromys.melonisland.net/munsell/ [accessed 28 October 2019].

Grant, W. D. 2006. Alkaline environments and biodiversity. In Extremophiles (Gerday, C. & Glansdorff, N., eds), pp. 1–20. Encyclopedia of Life Support Systems (EOLSS), EOLSS Publishers, Oxford, UK.

Grossman, E. L. 2012. Applying oxygen isotope paleo­thermometry in deep time. The Paleontological Society Papers18, 39–68.
https://doi.org/10.1017/S1089332600002540

Hays, P. D. & Grossman, E. L. 1991. Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate. Geology19, 441–444.
https://doi.org/10.1130/0091-7613(1991)019<0441:OIIMCC>2.3.CO;2

Hotta, A., Parkkonen, R., Hiltunen, M., Arro, H., Loosaar, J., Parve, T., Pihu, T., Prikk, A. & Tiikma, T. 2005. Experience of Estonian oil shale combustion based on CFB technology at Narva Power Plants. Oil Shale22, 381–397.

Kann, J., Elenurm, A., Rohtla, I., Golubev, N., Kaidalov, A. & Kindorkin, B. 2004. About thermal low-temperature processing of oil shale by solid heat carrier method. Oil Shale21, 195–203.

Keeling, R. F., Graven, H. D., Welp, L. R., Resplandy, L., Bi, J., Piper, S. C., Sun, Y., Bollenbacher, A. & Meijer, H. A. J. 2017. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proceedings of the National Academy of Sciences114, 10361–10366.
https://doi.org/10.1073/pnas.1619240114

Koel, M. 1999. Estonian oil shale. Oil Shale Extra.

Konist, A., Pihu, T., Neshumayev, D. & Siirde, A. 2013. Oil shale pulverized firing: boiler efficiency, ash balance and flue gas composition. Oil Shale30, 6–18.
https://doi.org/10.3176/oil.2013.1.02

Konist, A., Maaten, B., Loo, L., Neshumayev, D. & Pihu, T. 2016. Mineral sequestration of COby carbonation of Ca-rich oil shale ash in natural conditions. Oil Shale33, 248–259.
https://doi.org/10.3176/oil.2016.3.04

Krishnamurthy, R. V., Schmitt, D., Atekwana, E. A. & Baskaran, M. 2003. Isotopic investigations of carbonate growth on concrete structures. Applied Geochemistry18, 435–444.
https://doi.org/10.1016/S0883-2927(02)00089-6

Kuusik, R., Uibu, M. & Kirsimäe, K. 2005. Characterization of oil shale ashes formed at industrial scale boilers. Oil Shale22, 407–420.

Leben, K., Mõtlep, R., Paaver, P., Konist, A., Pihu, T., Paiste, P., Heinmaa, I., Nurk, G., Anthony, E. J. & Kirsimäe, K. 2019. Long-term mineral transformation of Ca-rich oil shale ash waste. Science of the Total Environment658, 1404–1415.
https://doi.org/10.1016/j.scitotenv.2018.12.326

Leleu, T., Chavagnac, V., Delacour, A., Noiriel, C., Ceuleneer, G., Aretz, M., Rommevaux, C. & Ventalon, S. 2016. Travertines associated with hyperalkaline springs: evaluation as a proxy for paleoenvironmental conditions and sequestration of atmospheric CO2Journal of Sedimentary Research86, 1328–1343.
https://doi.org/10.2110/jsr.2016.79

Létolle, R., Gégout, P., Rafai, N. & Revertegat, E. 1992. Stable isotopes of carbon and oxygen for the study of carbonation/decarbonation processes in concretes. Cement and Concrete Research22, 235–240.
https://doi.org/10.1016/0008-8846(92)90061-Y

Liira, M., Kirsimäe, K., Kuusik, R. & Mõtlep, R. 2009. Transformation of calcareous oil-shale circulating fluidized-bed combustion boiler ashes under wet conditions. Fuel88, 712–718.
https://doi.org/10.1016/j.fuel.2008.08.012

L´vov, B. V. 2007. Thermal Decomposition of Solids and Melts. Springer, Netherlands, 247 pp.

Macleod, G., Fallick, A. E. & Hall, A. J. 1991. The mechanism of carbonate growth on concrete structures, as elucidated by carbon and oxygen isotope analyses. Chemical Geology: Isotope Geoscience Section86, 335–343.
https://doi.org/10.1016/0168-9622(91)90015-O

Mickler, P. J., Stern, L. A. & Banner, J. L. 2006. Large kinetic isotope effects in modern speleothems. Geological Society of America Bulletin118, 65–81.
https://doi.org/10.1130/B25698.1

Mõtlep, R., Sild, T., Puura, E. & Kirsimäe, K. 2010. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments. Journal of Hazardous Materials184, 567–573.
https://doi.org/10.1016/j.jhazmat.2010.08.073

Neshumayev, D., Pihu, T., Siirde, A., Järvik, O. & Konist, A. 2019. Solid heat carrier oil shale retorting technology with integrated CFB technology. Oil Shale36, 99–113.
https://doi.org/10.3176/oil.2019.2S.02

Paaver, P., Paiste, P., Mõtlep, R. & Kirsimäe, K. 2017. Self-cementing properties and alkali activation of Enefit280 solid heat carrier retorting ash. Oil Shale34, 263–278.
https://doi.org/10.3176/oil.2017.3.05

Pihu, T., Konist, A., Puura, E., Liira, M. & Kirsimäe, K. 2019. Properties and environmental impact of oil shale ash landfills. Oil Shale36, 257–270.
https://doi.org/10.3176/oil.2019.2.01

Punning, J.-M., Toots, M. & Vaikmäe, R. 1987. Oxygen-18 in Estonian natural waters. Isotopenpraxis Isotopes in Environmental and Health Studies23, 232–234.
https://doi.org/10.1080/10256018708623797

Sedman, A., Talviste, P. & Kirsimäe, K. 2012. The study of hydration and carbonation reactions and corresponding changes in the physical properties of co-deposited oil shale ash and semicoke wastes in a small-scale field experiment. Oil Shale29, 279–294.
https://doi.org/10.3176/oil.2012.3.07

Stansell, N. D., Klein, E. S., Finkenbinder, M. S., Fortney, C. S., Dodd, J. P., Terasmaa, J. & Nelson, D. B. 2017. A stable isotope record of Holocene precipitation dynamics in the Baltic region from Lake Nuudsaku, Estonia. Quaternary Science Reviews175, 73–84.
https://doi.org/10.1016/j.quascirev.2017.09.013

Swart, P. K. 2015. The geochemistry of carbonate diagenesis: The past, present and future. Sedimentology62, 1233–1304.
https://doi.org/10.1111/sed.12205

Talviste, P., Sedman, A., Mõtlep, R. & Kirsimäe, K. 2013. Self-cementing properties of oil shale solid heat carrier retorting residue. Waste Management & Research31, 641–647.
https://doi.org/10.1177/0734242X13482033

Teboul, P.-A., Durlet, C., Gaucher, E. C., Virgone, A., Girard, J.-P., Curie, J., Lopez, B. & Camoin, G. F. 2016. Origins of elements building travertine and tufa: New perspectives provided by isotopic and geochemical tracers. Sedimentary Geology334, 97–114.
https://doi.org/10.1016/j.sedgeo.2016.01.004

Uibu, M., Kuusik, R. & Veskimäe, H. 2008. Seasonal binding of atmospheric CO2 by oil shale ash. Oil Shale25, 254–266.
https://doi.org/10.3176/oil.2008.2.07

Whiticar, M. J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology161, 291–314.
https://doi.org/10.1016/S0009-2541(99)00092-3

Back to Issue