ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Humus forms, carbon stock and properties of soil organic matter in forests formed on dry mineral soils in Latvia; pp. 63–75
PDF | https://doi.org/10.3176/earth.2020.04

Authors
Imants Kukuļs, Oļģerts Nikodemus, Raimonds Kasparinskis, Zane Žīgure
Abstract

Over the last decades, more attention has been paid to carbon accumulation in soil, more recently, to soil humus forms, as they indicate environmental conditions and state of soil organic matter. There is insufficient information on the impact of soil and forest type on the chemical properties of soil, soil organic matter and humus form. Knowledge about the chemical properties of humus is crucial for modelling C and N accumulation and storage in forest soils. On this account, the aim of this study was to characterize soil humus forms, humus chemical properties and C stock and to determine the spatial distribution correlations between soil humus forms in forests formed on dry mineral soils. We studied humus forms in 44 sampling sites located in different types of forests. Soil samples were collected from genetic O and A (EA) horizons and analysed for organic carbon (CORG) and total nitrogen (NTOT) content and NaOH extractable organic matter. Generalized linear model analysis showed that the distribution of the psammomor and mor humus forms is related to oligotrophic forest types, while glaciogenic and glaciolimnic sediments constitute the main precondition for the occurrence of the mull humus form. The psammomor and mor humus forms have the lowest CORG stock in the topsoil, and more than 75% of the total CORG is accumulated in the O horizon. The mull humus form soils have the highest CORG stock in the mineral topsoil, accumulating 80% of the total topsoil CORG stock. The Ah horizons of the mull humus soils also have a significantly lower CHS-to-CORG ratio.

References

Albers, D., Migge, S., Schäfer, M. & Scheu, S. 2004. Decomposition of beech leaves (Fagus sylvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce. Soil Biology & Biochemistry, 36, 155-164.

https://doi.org/10.1016/j.soilbio.2003.09.002

Bārdule, A., Bāders, E., Stola, J. & Lazdiņš, A. 2009. Latvijas meža augšņu īpašību raksturojums demonstrācijas projekta BioSoil rezultātu skatījumā [Forest soil characteristics in Latvia according to results of the demonstration project BioSoil]. Mežzinātne, 53(20), 105-124 [in Latvian, with English summary].

Bayranvand, M., Kooch, Y., Hosseini, S. M. & Alberti, G. 2017. Humus forms in relation to altitude and forest type in the Northern mountainous regions of Iran. Forest Ecology and Management, 385, 78-86.
https://doi.org/10.1016/j.foreco.2016.11.035

Burt, R. (ed.). 2004. Soil Survey Laboratory Methods Manual. Soil Survey Investigations. Report, No 42, 736 pp.

Buss, K. 1997. Forest ecosystem classification in Latvia. Proceedings of the Latvian Academy of Sciences, Section B, 51, 204-218.

Carter, M. R. & Gregorich, E. G. 2007. Soil Sampling and Methods of Analysis (2nd Edition). CRC Press, Boca Raton, 1224 pp.
https://doi.org/10.1201/9781420005271

Cerli, C., Celi, L., Kaiser, K., Guggenberger, G., Johansson, M.-B., Cignetti, A. & Zanini, E. 2008. Changes in humic substances along an age sequence of Norway spruce stands planted on former agricultural land. Organic Geochemistry, 39, 1269-1280.
https://doi.org/10.1016/j.orggeochem.2008.06.001

Chertov, O. & Nadporozhskaya, M. 2018. Development and application of humus form concept for soil classification, mapping and dynamic modelling in Russia. Applied Soil Ecology, 123, 420-423.
https://doi.org/10.1016/j.apsoil.2017.04.006

De Vos, B., Cools, N., Ilvesniemi, H., Vesterdal, L., Vanguelova, E. & Carnicelli, S. 2015. Benchmark values for forest soil carbon stocks in Europe: results from a large scale forest soil survey. Geoderma, 251-252, 33-46.
https://doi.org/10.1016/j.geoderma.2015.03.008

[FAO] Food and Agriculture Organization. 2006. Guidelines for Soil Description. Fourth edition. Food and Agriculture Organization of the United Nations, Rome, 97 pp.

Freyerová, K., & Šefrna, L. 2014. Soil organic carbon density and storage in podzols - a case study from Ralsko region (Czech Republic). AUC Geographica, 49, 65-72.
https://doi.org/10.14712/23361980.2014.16

Fröberg, M., Kleja, D., Bergkvist, B., Tipping, E. & Mulder, J. 2005. Dissolved organic carbon leaching from a coniferous forest floor - a field manipulation experiment. Biogeochemistry, 75, 271-287.
https://doi.org/10.1007/s10533-004-7585-y

Grand, S. & Lavkulich, L. 2011. Depth distribution and predictors of soil organic carbon in podzols of a forested watershed in Southwestern Canada. Soil Science, 176, 164-174.
https://doi.org/10.1097/SS.0b013e3182128671

Hosseini Bai, S., Xu, Z., Blumfield, T. & Reverchon, F. 2015. Human footprints in urban forests: implication of nitrogen deposition for nitrogen and carbon storage. Journal of Soils and Sediments, 15, 1927-1936.
https://doi.org/10.1007/s11368-015-1205-4

IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014. Update 2015. World Soil Resource Report No.106. FAO, Rome, 192 pp.

Kalbitz, K. & Geyer, W. 2001. Humification indices of water-soluble fulvic acids derived from synchronous fluorescence spectra - effects of spectrometer type and concentration. Journal of Plant Nutrition and Soil Science, 164, 259-265.
https://doi.org/10.1002/1522-2624(200106)164:3<259::AID-JPLN259>3.0.CO;2-T

Kalbitz, K., Geyer, W. & Geyer, S. 1999. Spectroscopic properties of dissolved humic substances - a reflection of land use history in a fen area. Biogeochemistry, 47, 219-238.
https://doi.org/10.1007/BF00994924

Kalbitz, K., Kaiser, K., Bargholz, J. & Dardenne, P. 2006. Lignin degradation controls the production of dissolved organic matter in decomposing foliar litter. European Journal of Soil Science, 57, 504-516.
https://doi.org/10.1111/j.1365-2389.2006.00797.x

Kanerva, S. & Smolander, A. 2007. Microbial activities in forest floor layers under silver birch, Norway spruce and Scots pine. Soil Biology and Biochemistry, 39, 1459-1467.
https://doi.org/10.1016/j.soilbio.2007.01.002

Kasparinskis, R. & Nikodemus, O. 2012. Influence of environmental factors on the spatial distribution and diversity of forest soil in Latvia. Estonian Journal of Earth Sciences, 61, 48-64.
https://doi.org/10.3176/earth.2012.1.04

Kõlli, R. 2013. Humus cover and its fabric depending on pedo-ecological conditions and land use: an Estonian approach to classification of humus forms. Estonian Journal of Ecology, 62, 6-23.
https://doi.org/10.3176/eco.2013.1.02

Kõlli, R. & Köster, T. 2018. Interrelationships of humus cover (pro humus form) with soil cover and plant cover: humus form as transitional space between soil and plant. Applied Soil Ecology, 123, 451-454.
https://doi.org/10.1016/j.apsoil.2017.07.029

Kõlli, R. & Rannik, K. 2018. Matching Estonian humus cover types' (pro humus forms') and soils' classifications. Applied Soil Ecology, 123, 627-631.
https://doi.org/10.1016/j.apsoil.2017.09.038

Korhonen, J. F. J., Pihlatie, M., Pumpanen, J., Aaltonen, H., Hari, P., Levula, J., Kieloaho, A.-J., Nikinmaa, E., Vesala, T. & Ilvesniemi, H. 2013. Nitrogen balance of a boreal Scots pine forest. Biogeosciences, 10, 1083-1095.
https://doi.org/10.5194/bg-10-1083-2013

Korkina, I. N. & Vorobeichik, E. L. 2016. The humus index: a promising tool for environmental monitoring. Russian Journal of Ecology, 47, 526-531.
https://doi.org/10.1134/S1067413616060084

Labaz, B., Galka, B., Bogacz, A., Waroszewski, J. & Kabala, C. 2014. Factors influencing humus forms and forest litter properties in the mid-mountains under temperate climate of southwestern Poland. Geoderma, 230-231, 265-273.
https://doi.org/10.1016/j.geoderma.2014.04.021

Martin, D., Srivastava, P. C., Ghosh, D. & Zech, W. 1998. Characteristics of humic substances in cultivated and natural forest soil of Sikkim. Geoderma, 84, 345-362.
https://doi.org/10.1016/S0016-7061(98)00010-X

Muscolo, A., Sidari, M., Pizzeghello, D. & Nardi, S. 2009. Effects of humic substances isolated from earthworm faeces. Dynamic Soil, Dynamic Plant, 2, 45-52.

Niemi, R. M., Vepsäläinen, M., Erkomaa, K. & Ilvesniemi, H. 2007. Microbial activity during summer in humus layers under Pinus silvestris and Alnus incana. Forest Ecology and Management, 242, 314-323.
https://doi.org/10.1016/j.foreco.2007.01.049

Peltier, A., Ponge, J.-F., Jordana, R. & Ariño, A. 2001. Humus forms in Mediterranean scrublands with Aleppo Pine. Soil Science Society of America Journal, 65, 884-896.
https://doi.org/10.2136/sssaj2001.653884x

Piccolo, A. 1996. Humus and soil conservation. In Humic Substances in Terrestrial Ecosystems (Piccolo, A., ed.), pp. 225-264. Elsevier Science, Amsterdam.
https://doi.org/10.1016/B978-044481516-3/50006-2

Ponge, J.-F. 2013. Plant-soil feedbacks mediated by humus forms: a review. Soil Biology and Biochemistry, 57, 1048-1060.
https://doi.org/10.1016/j.soilbio.2012.07.019

Ponge, J.-F., Jabiol, B. & Gégout, J.-C. 2011. Geology and climate conditions affect more humus forms than forest canopies at large scale in temperate forests. Geoderma, 162, 187-195.
https://doi.org/10.1016/j.geoderma.2011.02.003

Qualls, R. G., Takiyama, A. & Wershaw, R. L. 2003. Formation and loss of humic substances during decomposition in a pine forest floor. Soil Science Society of America Journal, 67, 899-909.
https://doi.org/10.2136/sssaj2003.0899

Quinn, G. P. & Keough, M. J. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, New York, 557 pp.
https://doi.org/10.1017/CBO9780511806384

Remy, E., Wuyts, K., Boeckx, P., Ginzburg, S., Gundersen, P., Demey, A., Van Den Bulcke, J., Van Acker, J. & Verheyen, K. 2016. Strong gradients in nitrogen and carbon stocks at temperate forest edges. Forest Ecology and Management, 376, 45-58.
https://doi.org/10.1016/j.foreco.2016.05.040

Smolander, A. & Kitunen, V. 2002. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biology and Biochemistry, 34, 651-660.
https://doi.org/10.1016/S0038-0717(01)00227-9

Tan, Kim H. 2005. Soil Sampling, Preparation, and Analysis (2nd edition). CRC Press, New York, 672 pp.

Terauda, E &Nikodemus, O. 2006. Element inputs by litterfall to the soil in pine forest ecosystems. Environmental Bioindicators, 1, 145-156.
https://doi.org/10.1080/15555270600705673

Trap, J., Bureau, F., Akpa-Vinceslas, M., Decaëns, T. & Aubert, M. 2011. Changes in humus forms and soil N pathways along a 130-year-old pure beech forest chronosequence. Annals of Forest Science, 68, 595-606.
https://doi.org/10.1007/s13595-011-0063-5

Vaičys, M., Rauguotis, A., Kubertavičiene, L. & Armolaitis, K. 1996. Properties of Lithuanian forest litters. Baltic Forestry, 2, 27-33.

van Reeuwijk, L. P. 1995. Procedures for Soil Analysis. ISRIC, Wageningen.

Vesterdal, L. 1999. Influence of soil type on mass loss and nutrient release from decomposing foliage litter of beech and Norway spruce. Canadian Journal of Forest Research, 29, 95-105.
https://doi.org/10.1139/x98-182

Vesterdal, L., Schmidt, I. K., Callesen, I., Nilsson, L. O. & Gundersen, P. 2008. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 255, 35-48.
https://doi.org/10.1016/j.foreco.2007.08.015

Vesterdal, L., Elberling, B., Christiansen, J., Callesen, I. & Schmidt, I. 2012. Soil respiration and rates of soil carbon turnover differ among six common European tree species. Forest Ecology and Management, 264, 185-196.
https://doi.org/10.1016/j.foreco.2011.10.009

Zanella, A., Jabiol, B., Ponge, J. F., Sartori, G., De Waal, R., Van Delft, B., Graefe, U., Cools, N., Katzensteiner, K., Hager, H. & Englisch, M. 2011. A European morpho-functional classification of humus forms. Geoderma, 164, 138-145.
https://doi.org/10.1016/j.geoderma.2011.05.016

Zanella, A., Bolzonella, C., Lowenfels, J., Ponge, J.-F., Bouché, M., Saha, D., Kukal, S. S., Fritz, I., Savory, A., Blouin, M., Sartori, L., Tatti, D., Kellermann, L. A., Trachsel, P., Burgos, S., Minasny, B. & Fukuoka, M. 2018a. Humusica 2, article 19: Techno humus systems and global change - Conservation agriculture and 4/1000 proposal. Applied Soil Ecology, 122, 271-296.
https://doi.org/10.1016/j.apsoil.2017.10.036

Zanella, A., Ponge, J.-F. & Briones, M. J. I. 2018b. Humusica 1, article 8: Terrestrial humus systems and forms - Biological activity and soil aggregates, space-time dynamics. Applied Soil Ecology, 122, 103-137.
https://doi.org/10.1016/j.apsoil.2017.07.020

Zanella, A., Ponge, J.-F., de Waal, R., Ferronato, C., De Nobili, M. & Juilleret, J. 2018c. Humusica 1, article 3: Essential bases - Quick look at the classification. Applied Soil Ecology, 122, 42-55.
https://doi.org/10.1016/j.apsoil.2017.05.025

Zanella, A., Ponge, J.-F., Gobat, J.-M., Juilleret, J., Blouin, M., Aubert, M., Chertov, O. & Rubio, J. L. 2018d. Humusica 1, article 1: Essential bases - Vocabulary. Applied Soil Ecology, 122, 10-21.
https://doi.org/10.1016/j.apsoil.2017.07.004

Zanella, A., Ponge, J.-F., Hager, H., Pignatti, S., Galbraith, J., Chertov, O., Andreetta, A. & De Nobili, M. 2018e. Humusica 2, article 18: Techno humus systems and global change - Greenhouse effect, soil and agriculture. Applied Soil Ecology, 122, 254-270.
https://doi.org/10.1016/j.apsoil.2017.10.024

Zanella, A., Ponge, J.-F., Jabiol, B., Sartori, G., Kolb, E., Le Bayon, R.-C., Gobat, J.-M., Aubert, M., De Waal, R., Van Delft, B. et al. 2018f. Humusica 1, article 5: Terrestrial humus systems and forms - Keys of classification of humus systems and forms. Applied Soil Ecology, 122, 75-86.
https://doi.org/10.1016/j.apsoil.2017.05.026

Zech, W. & Kögel-Knabner, I. 1994. Patterns and regulation of organic matter transformation in soils: litter decomposition and humification. In Flux Control in Biological Systems (Schulze, E.-D., ed.), pp. 303-335. Academic Press, San Diego, CA.
https://doi.org/10.1016/B978-0-12-633070-0.50014-1

 

Back to Issue