The Ordovician Period has emerged as a highly dynamic time in Earth history. Comprehensive work on chrono-, chemo- and biostratigraphy has resulted in an overall well-constrained systemic framework, but several local successions around the globe still await detailed analysis in many respects. Herein we perform a high-resolution analysis of abiotic and biotic signals in the Lynna River section, a key locality in northwestern Russia. As this section has been pivotal in documenting the temporal evolution of the Great Ordovician Biodiversification Event on Baltica, the macroscopic and microscopic characteristics of the local succession reveal important paleoenvironmental information that ties into the global development during the Middle Ordovician. The results add particularly to the understanding of the characteristics and large-scale sedimentary ‘behavior’ of the Baltoscandian paleobasin. Microfacies vary consistently with the macroscopic appearance of the rocks, with intervals characterized by competent limestone being associated with coarser carbonate textures and intervals dominated by marly beds associated with finer textures. Along with carbonate textures, fossil grain assemblages vary in a rhythmic (~cyclic) manner. The local rocks are commonly partly dolomitized, with the proportion of dolomitization increasing up-section. Regional comparisons suggest that the changes in overall macro- and microfacies were strongly related to variations in sea level. New high-resolution conodont biostratigraphic data largely confirm previous regional correlations based on lithostratigraphy and trilobite faunas, and enable more robust correlations worldwide.
Adrain, J. M., Edgecombe, G. D., Fortey, R. A., Hammer, Ø., Laurie, J. R., McCormick,T.,Owen, A. W., Waisfeld, B. G., Webby, B. D., Westrop, S. R. & Zhou, Z.-Y. 2004. Trilobites. In The Great Ordovician Biodiversification Event (Webby, B. D., Droser, M. L. & Paris, F., eds), pp. 231-254. Columbia University Press, New York.
https://doi.org/10.7312/webb12678-025
Ahlberg, P., Lundberg, F., Erlström, M., Calner, M., Lindskog, A., Dahlqvist, P. & Joachimski, M. M. 2019. Integrated Cambrian biostratigraphy and carbon isotope chemostratigraphy of the Grönhögen-2015 drill core, Öland, Sweden. Geological Magazine, 156, 935-949.
https://doi.org/10.1017/S0016756818000298
Alexeev, V. A. 2014. Some features of distributions of extraterrestrial chromite grains in Ordovician limestone of the different regions of the world. In 45th Lunar and Planetary Science Conference Abstracts, No. 1005. Lunar and Planetary Institute, Houston.
Alikhova, T. N. 1960. Stratigrafiya ordovikskikh otlozhenij Russkoj platformy [Ordovician Stratigraphy of the Russian Platform]. Gosgeoltekhizdat, Moscow, 76 pp. [in Russian].
Bagnoli, G. & Stouge, S. 1997. Lower Ordovician (Billingenian-Kunda) conodont zonation and provinces based on sections from Horns Udde, north Öland, Sweden. Bollettino della Società Paleontologica Italiana, 33, 109-163.
Barnes, C. R., Fortey, R. A. & Williams, S. H. 1996. The pattern of global bio-events during the Ordovician Period. In Global Events and Event Stratigraphy in the Phanerozoic (Walliser, O. H., ed.), pp. 139-172. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-3-642-79634-0_9
Bergström, S. M. 1989. Use of graphic correlation for assessing event-stratigraphic significance and trans-Atlantic relationships of Ordovician K-bentonites. Proceedings of the Academy of Sciences of the Estonian SSR, Geology, 38, 55-59.
Bergström, S. M., Chen, X., Guitiérrez-Marco, J. C. & Dronov, A. 2009. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia, 42, 97-107.
https://doi.org/10.1111/j.1502-3931.2008.00136.x
Bunker, B. J., Witzke, B. J., Watney, W. L. & Ludvigson, G. A. 1988. Phanerozoic of the central midcontinent, United States. In Sedimentary Cover - North American Craton, The Geology of North America D-2 (Sloss, L. L., ed.), pp. 243-260. Geological Society of America, Boulder.
https://doi.org/10.1130/DNAG-GNA-D2.243
Callen, J. M. & Herrmann, A. D. 2019. In situ geochemistry of middle Ordovician dolomites of the upper Mississippi valley. The Depositional Record, 5, 4-22.
https://doi.org/10.1002/dep2.51
Calner, M. 2002. A lowstand epikarstic intertidal flat from the middle Silurian of Gotland, Sweden. Sedimentary Geology, 148, 389-403.
https://doi.org/10.1016/S0037-0738(01)00144-0
Cocks, L. R. M. & Torsvik, T. H. 2006. European geography in a global context from the Vendian to the end of the Palaeozoic. In European Lithosphere Dynamics (Gee, D. G. & Stephenson, R. A., eds), pp. 83-95. Geological Society, London.
https://doi.org/10.1144/GSL.MEM.2006.032.01.05
Colmenar, J. & Rasmussen, C. M. Ø. 2018. A Gondwanan perspective on the Ordovician Radiation constrains its temporal duration and suggests first wave of speciation, fuelled by Cambrian clades. Lethaia, 51, 286-295.
https://doi.org/10.1111/let.12238
Cronholm, A. & Schmitz, B. 2010. Extraterrestrial chromite distribution across the mid-Ordovician Puxi River section, central China: evidence for a global major spike in flux of L-chondritic matter. Icarus, 208, 36-48.
https://doi.org/10.1016/j.icarus.2010.02.004
Dronov, A. V. 1997a. Calcareous tempestites: depositional model for the Lower and Middle Ordovician of St. Petersburg region, NW Russia. In WOGOGOB-97 Abstracts (Koren, T. N., ed.), p. 21. VSEGEI, St. Petersburg.
Dronov, A. V. 1997b. Sea-level changes in the Ordovician of St. Petersburg region. In WOGOGOB-97 Abstracts (Koren, T. N., ed.), pp. 20-21. VSEGEI, St. Petersburg.
Dronov, A. V. (ed.). 1997c. Russian and International Bryozoan Conference, Bryozoa of the world: a field excursion guide, 30 June-8 July 1997, St. Petersburg. Terra Nostra, Schriften der Alfred-Wegener-Stiftung, 97(12), 1-56.
Dronov, A. V. 1998. Shtormovaya sedimentatsiya v nizhneordovikskikh karbonatno-terrigennykh otlozheniyakh okrestnostej Sankt-Peterburga [Storm sedimentation in the Lower Ordovician mixed carbonate-terrigenous deposits in the vicinity of St. Petersburg]. Byulleten′ MOIP, Otdel Geologicheskij, 73(2), 43-51 [in Russian].
Dronov, A. V. 1999. Kolebaniya urovnya morya v rannem ordovike i ikh otrazhenie v razrezakh vostochnoj chasti glinta [The fluctuations of the sea level in the early Ordovician and their reflection in the sections of the eastern part of the glint]. Byulleten′ MOIP, Otdel Geologicheskij, 74, 39-47 [in Russian].
Dronov, A. V. 2000. Sekvens-stratigrafiya ordovikskogo paleobassejna Baltoskandii, Avtoreferat na soiskanie uchenoj stepeni doktora geologo-mineralogicheskikh nauk [Sequence Stratigraphy of the Ordovician Paleobasin of Baltoscandia, Summary of the Dr of Science Dissertation]. St. Petersburg University, St. Petersburg, 32 pp. [in Russian].
Dronov, A. V. 2013. Depositional sequences and sea-level changes in the Ordovician of Baltoscandia. In Stratigraphy of the Early XXI Century: Tendencies and New Ideas (Gladenkov, Yu. B. & Mezhelovskii, N. V., eds), pp. 65-92. Geokart, GEOS, Moscow [in Russian].
Dronov, A. 2017. Chapter 5 - Ordovician sequence stratigraphy of the Siberian and Russian platforms. In Advances in Sequence Stratigraphy. Special Issue: Stratigraphy & Timescale, Vol. 2 (Montenari, M., ed.), pp. 187-241. Elsevier, Oxford.
https://doi.org/10.1016/bs.sats.2017.07.005
Dronov, A. V. & Fedorov, P. V. 1995. Karbonatnyj ordovik okrestnostej S.-Peterburga: stratigrafiya zheltyakov i frizov [Carbonate Ordovician in the Vicinity of St. Petersburg: Stratigraphy of Zheltiaki and Frizy]. Vestnik St.-Peterburgskogo Uuniversiteta, Vyp. 7: Geologiya, Geografiya, Vyp. 2, 14, 9-16 [in Russian].
Dronov, A. & Holmer, L. E. 1999. Depositional sequences in the Ordovician of Baltoscandia. In Quo vadis Ordovician? Short Papers of the 8th International Symposium on the Ordovician System (Kraft, P. & Fatka, O., eds), Acta Universitatis Carolinae - Geologica, 43, 1133-1136.
Dronov, A. & Holmer, L. 2002. Ordovician sea-level curve: Baltoscandian view. In The Fifth Baltic Stratigraphical Conference, Basin Stratigraphy - Modern Methods and Problems, September 22-27, 2002, Vilnius, Lithuania: Extended Abstracts (Satkūnas, J. & Lazauskienė, J., eds), pp. 33-35. Vilnius Universtiy, Vilnius.
Dronov, A. & Mikuláš, R. 2010. Paleozoic Ichnology of St. Petersburg Region: Excursion Guidebook. Geological Institute, Russian Academy of Sciences, Moscow, 70 pp.
Dronov, A. & Rozhnov, S. 2007. Climatic changes in the Baltoscandian basin during the Ordovician: sedimentological and palaeontological aspects. Acta Palaeontologica Sinica, 46, S108-S113.
Dronov, A. V., Koren, T. N., Popov, L. E., Tolmacheva, T. Yu. & Holmer, L. E. 1995. Uppermost Cambrian and Lower Ordovician in northwestern Russia: sequence stratigraphy, sea level changes and bio-events. In Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System (Cooper, J. D., Droser, M. L. & Finney, S. C., eds), Pacific Section, Society for Sedimentary Geology (SEPM), 77, 319-322.
Dronov, A. V., Koren, T. N., Popov, L. E. & Tolmacheva, T. Yu. 1998. Metodika sobytijnoj stratigrafii v obosnovanii korrelyatsii regional′nykh stratonov na primere nizhnego ordovika Severo-Zapada Rossii [Methodology of Event Stratigraphy in the Justification of Regional Stratigraphic Correlations on the Example of the Lower Ordovician of Northwest Russia]. Izd-vo VSEGEI, St. Petersburg, 88 pp. [in Russian].
Dronov, A., Holmer, L., Meidla, T., Sturesson, U., Tinn, O. & Ainsaar, L. 2001. Detailed litho- and sequence stratigraphy of the "Täljsten" limestone unit and its equivalents in the Ordovician of Baltoscandia. In WOGOGOB-2001 Abstracts (Harper, D. A. T. & Stouge, S., eds), pp. 8-9. Copenhagen University, Copenhagen.
Dronov, A. V., Mikuláš, R. & Logvinova, M. 2002. Trace fossils and ichnofabrics across the Volkhov depositional sequence (Ordovician, Arenigian of St. Petersburg region, Russia). Journal of the Czech Geological Society, 47, 133-146.
Dronov, A., Tolmacheva, T., Raevskaya, E. & Nestell, M. (eds). 2005. Cambrian and Ordovician of St. Petersburg Region. St. Petersburg State University, St. Petersburg, 62 pp.
Dronov, A. V., Ainsaar, L., Kaljo, D., Meidla, T., Saadre, T. & Einasto, R. 2011. Ordovician of Baltoscandia: facies, sequences and sea-level changes. In Ordovician of the World (Gutiérrez-Marco, J. C., Rábano, I. & Garcia-Bellido, D., eds), Publicaciones del Instituto Geológico y Minero de España, Cuadernos del Museo Geominero, 14, 143-150.
Dunham, R. J. 1962. Classification of carbonate rocks according to depositional texture. In Classification of Carbonate Rocks - A Symposium (Ham, W. E., ed.), American Association of Petroleum Geologists Memoir, 1, 108-121.
Epstein, A. G., Epstein, J. B. & Harris, L. D. 1977. Conodont color alteration - an index to organic metamorphism. Geological Survey Professional Paper, 995, 1-27.
https://doi.org/10.3133/pp995
Eriksson, M. E., Lindskog, A., Calner, M., Mellgren, J. I. S., Bergström, S. M., Terfelt, F. & Schmitz, B. 2012. Biotic dynamics and carbonate microfacies of the conspicuous Darriwilian (Middle Ordovician) 'Täljsten' interval, south-central Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology, 367-368, 89-103.
https://doi.org/10.1016/j.palaeo.2012.02.012
Flügel, E. 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer Verlag, Berlin, 984 pp.
https://doi.org/10.1007/978-3-642-03796-2
Föllmi, K. B. 2016. Sedimentary condensation. Earth-Science Reviews, 152, 143-180.
https://doi.org/10.1016/j.earscirev.2015.11.016
Gingras, M. K., Pemberton, S. G., Muelenbachs, K. & Machel, H. 2004. Conceptual models for burrow-related, selective dolomitization with textural and isotopic evidence from the Tyndall Stone, Canada. Geobiology, 2, 21-30.
https://doi.org/10.1111/j.1472-4677.2004.00022.x
Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. (eds). 2012. The Geologic Time Scale 2012. Elsevier, Boston, 1176 pp.
Gregg, J. M., Bish, D. L., Kaczmarek, S. E. & Machel, H. G. 2015. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review. Sedimentology, 62, 1749-1769.
https://doi.org/10.1111/sed.12202
Häggström, T. & Schmitz, B. 2007. Distribution of extraterrestrial chromite in Middle Ordovician Komstad Limestone in the Killeröd quarry, Scania, Sweden. Bulletin of the Geological Society of Denmark, 55, 37-58.
Hansen, J. & Harper, D. A. T. 2003. Brachiopod macrofaunal distribution through the upper Volkhov-lower Kunda (Lower Ordovician) rocks, Lynna River, St. Petersburg region. Bulletin of the Geological Society of Denmark, 50, 45-53.
Hansen, T. & Nielsen, A. T. 2003. Upper Arenig trilobite biostratigraphy and sea-level changes at Lynna River near Volkhov, Russia. Bulletin of the Geological Society of Denmark, 50, 105-114.
Harper, D. A. T., Rasmussen, C. M. Ø., Liljeroth, M., Blodgett, R. B., Candela, Y., Jin, J., Percival, I. G., Rong, J.-Y., Villas, E. & Zhan, R.-B. 2013. Biodiversity, biogeography and phylogeography of Ordovician rhynchonelliform brachiopods. Geological Society, London, Memoirs, 38, 127-144.
https://doi.org/10.1144/M38.11
Harper, D. A. T, Hammarlund, E. U. & Rasmussen, C. M. Ø. 2014. End Ordovician extinctions: a coincidence of causes. Gondwana Research, 25, 1294-1307.
https://doi.org/10.1016/j.gr.2012.12.021
Haq, B. & Schutter, S. R. 2008. A chronology of Paleozoic sea-level changes. Science, 322, 64-68.
https://doi.org/10.1126/science.1161648
Heck, P. R., Schmitz, B., Rout, S. S., Tenner, T., Villalon, K., Cronholm, A., Terfelt, F. & Kita, N. T. 2016. A search for H-chondritic chromite grains in sediments that formed immediately after the breakup of the L-chondrite parent body 470 Ma ago. Geochimica et Cosmochimica Acta, 177, 120-129.
https://doi.org/10.1016/j.gca.2015.11.042
Heck, P. R., Schmitz, B., Bottke, W. F., Rout, S. S., Kita, N. T., Cronholm, A., Defouilloy, C., Dronov, A. & Terfelt, F. 2017. Rare meteorites common in the Ordovician period. Nature Astronomy, 1, 0035.
https://doi.org/10.1038/s41550-016-0035
Hints, L., Harper, D. A. T. & Paškevičius, J. 2018. Diversity and biostratigraphic utility of Ordovician brachiopods in the East Baltic. Estonian Journal of Earth Sciences, 67, 176-191.
https://doi.org/10.3176/earth.2018.14
Hints, O., Viira, V. & Nõlvak, J. 2012. Darriwilian (Middle Ordovician) conodont biostratigraphy in NW Estonia. Estonian Journal of Earth Sciences, 61, 210-226.
https://doi.org/10.3176/earth.2012.4.03
Hulings, N. C. & Gray, J. S. 1971. A manual for the study of meiofauna. Smithsonian Contributions to Zoology, 78, 1-83.
https://doi.org/10.5479/si.00810282.78
Iskyul, G. S. 2004. Sekvens-stratigraficheskoe raschlenenie intervala BIIIα-BIIIβ kundaskogo gorizonta (ordovik) Leningradskoj oblasti [Sequence stratigraphy of the BIIIα-BIIIβ interval of the Kunda Regional Stage (Ordovician) of the Leningrad region]. In Ordovikskoe plato (k 100-letiyu so dnya rozhdeniya B. P. Asatkina. Nauchnye chteniya po geologii ordovika Leningradskoj oblasti [Ordovician Plateau (100 years from the Birthday of B. P. Asatkin. Scientific Reading on the Ordovician Geology of the Leningrad Region)] (Dronov, A. V., ed.), pp. 68-85. Voentekhinizdat, Moscow [in Russian].
Iskyul, G. S. 2015. Opornyj razrez kundaskogo gorizonta (srednij ordovik) na reke Lava: opisanie i biostratigraficheskoe raschlenenie po trilobitam [Key section of the Kunda Regional Stage (Middle Ordovician) at the Lava River: description and biostratigraphy based on trilobites]. Regional'naya Geologiya i Metallogeniya [Regional Geology and Metallogeny], 63, 9-19 [in Russian, with English summary].
Ivantsov, A. Yu. 2003. Ordovician trilobites of the subfamily Asaphinae of the Ladoga Glint. Paleontological Journal, 37, S229-S337.
Ivantsov, A. Yu. & Melnikova, L. M. 1998. Volkhovskij i kundaskij gorizonty ordovika i kharakteristika trilobitov i ostrakod na reke Volkhov (Leningradskaya oblast′) [Ordovician Volkhov and Kunda regional stages and characteristics of trilobites and ostracods on the Volkhov River (Leningrad Region)]. Stratigrafiya. Geologicheskaya korrelyatsiya [Stratigraphy. Geologic Correlation], 6(5), 47-63 [in Russian].
Jaanusson, V. 1973. Aspects of carbonate sedimentation in the Ordovician of Baltoscandia. Lethaia, 6, 11-34.
https://doi.org/10.1111/j.1502-3931.1973.tb00871.x
Jaanusson, V. 1976. Faunal dynamics in the Middle Ordovician (Viruan) of Baltoscandia. In The Ordovician System: Proceedings of a Palaeontological Association Symposium, Birmingham, September 1974 (Bassett, M. G., ed.), pp. 301-326. University of Wales Press and National Museum of Wales, Cardiff.
Jaanusson, V. 1982a. Introduction to the Ordovician of Sweden. In Field Excursion Guide. 4th International Symposium on the Ordovician System (Bruton, D. L. & Williams, S. J., eds), Paleontological Contributions from the University of Oslo, 279, 1-10.
Jaanusson, V. 1982b. The Siljan district. In Field Excursion Guide. 4th International Symposium on the Ordovician System (Bruton, D. L. & Williams, S. J., eds), Paleontological Contributions from the University of Oslo, 279, 15-42.
Jaanusson, V. 1995. Confacies differentiation and upper Middle Ordovician correlation in the Baltoscandian Basin. Proceedings of the Estonian Academy of Sciences, 44, 73-86.
Jaanusson, V. & Mutvei, H. 1951. Ein Profil durch den Vaginatum-Kalkstein im Siljan-Gebiet, Dalarna. Geologiska Föreningens i Stockholm Förhandlingar, 73, 630-636.
https://doi.org/10.1080/11035895109452859
Jaanusson, V. & Mutvei, H. 1982. Ordovician of Öland. Guide to Excursion 3. IV International Symposium on the Ordovician System, Oslo 1982. Swedish Museum of Natural History, Stockholm, 23 pp.
Jarochowska, E., Munnecke, A., Frisch, K., Ray, D. C. & Castagner, A. 2016. Faunal and facies changes through the mid Homerian (late Wenlock, Silurian) positive carbon isotope excursion in Podolia, western Ukraine. Lethaia, 49, 170-198.
https://doi.org/10.1111/let.12137
Jeppsson, L., Anehus, R. & Fredholm, D. 1999. The optimal acetate buffered acetic acid technique for extracting phosphatic fossils. Journal of Paleontology, 73, 957-965.
https://doi.org/10.1017/S0022336000040798
Karis, L. 1998. Jämtlands östliga fjällberggrund. In Beskrivning till berggrundskartan över Jämtlands län, Del 2: Fjälldelen (Karis, L. & Strömberg, A. G. B., eds), Sveriges Geologiska Undersökning, Ca 53(2), 1-184.
Knaust, D. & Dronov, A. 2013. Balanoglossites ichnofabrics from the middle Ordovician Volkhov formation (St. Petersburg region, Russia). Stratigraphy and Geological Correlation, 21, 265-279.
https://doi.org/10.1134/S0869593813030040
Knaust, D., Curran, H. A. & Dronov, A. V. 2012. Shallow-marine carbonates. In Trace Fossils as Indicators of Sedimentary Environments (Knaust, D. & Bromley, R., eds), Developments in Sedimentology, 64, 705-750.
https://doi.org/10.1016/B978-0-444-53813-0.00023-X
Korochantsev, A. V., Lorenz, C. A., Ivanova, M. A., Zaytsev, A. V., Kononkova, N. N., Roshchina, I. A., Korochantseva, E. V., Sadilenko, D. A. & Skripnik, A. Yu. 2009. Sediment-dispersed extraterrestrial chromite in Ordovician limestone from Russia. In Abstracts of Papers Submitted to the Lunar and Planetary Science Conference XL, No. 1101.
Koromyslova, A. V. 2011. Bryozoans of the Latorp and Volkhov Horizons (Lower-Middle Ordovician) of the Leningrad Region. Paleontological Journal, 45, 887-980.
https://doi.org/10.1134/S0031030111080028
Kröger, B. & Rasmussen, J. A. 2014. Middle Ordovician cephalopod biofacies and palaeoenvironments of Baltoscandia. Lethaia, 47, 275-295.
https://doi.org/10.1111/let.12057
Kröger, B., Franeck, F. & Rasmussen, C. M. Ø. 2019. The evolutionary dynamics of the early Palaeozoic marine biodiversity accumulation. Proceedings of the Royal Society B, 286, doi: 10.1098/rspb.2019.1634.
https://doi.org/10.1098/rspb.2019.1634
Lamansky, W. 1905. Drevnejshie sloi silurijskikh otlozhenij Rossii [Die aeltesten silurischen Schichten Russlands (Etage B)]. Trudy Geologicheskogo Komiteta, Novaya Seriya/Mémoires du Comité Géologique, Nouvelle Serie, Livr. 20, 1-203 [in Russian, with German summary].
Lindskog, A. 2014. Palaeoenvironmental significance of cool-water microbialites in the Darriwilian (Middle Ordovician) of Sweden. Lethaia, 47, 187-204.
https://doi.org/10.1111/let.12050
Lindskog, A. & Eriksson, M. E. 2017. Megascopic processes reflected in the microscopic realm: sedimentary and biotic dynamics of the Middle Ordovician "orthoceratite limestone" at Kinnekulle, Sweden. GFF, 139, 163-183.
https://doi.org/10.1080/11035897.2017.1291538
Lindskog, A., Schmitz, B., Cronholm, A. & Dronov, A. 2012. A Russian record of a Middle Ordovician meteorite shower: extraterrestrial chromite at Lynna River, St. Petersburg region. Meteoritics and Planetary Science, 47, 1274-1290.
https://doi.org/10.1111/j.1945-5100.2012.01383.x
Lindskog, A., Eriksson, M. E. & Pettersson, A. M. L. 2014. The Volkhov-Kunda transition and the base of the Holen Limestone at Kinnekulle, Västergötland, Sweden. GFF, 136, 167-171.
https://doi.org/10.1080/11035897.2014.880507
Lindskog, A., Costa, M. M., Rasmussen, C. M. Ø., Connelly, J. N. & Eriksson, M. E. 2017. Refined Ordovician timescale reveals no link between asteroid breakup and biodiversification. Nature Communications, 8, 14066.
https://doi.org/10.1038/ncomms14066
Lindskog, A., Lindskog, A. M. L., Johansson, J. V., Ahlberg, P. & Eriksson, M. E. 2018. The Cambrian-Ordovician succession at Lanna, Närke, Sweden: stratigraphy and depositional environments. Estonian Journal of Earth Sciences, 67, 133-148.
https://doi.org/10.3176/earth.2018.10
Lindskog, A., Eriksson, M. E., Bergström, S. M. & Young, S. A. 2019. Lower-Middle Ordovician carbon and oxygen isotope chemostratigraphy at Hällekis, Sweden: implications for regional to global correlations and palaeoenvironmental development. Lethaia, 52, 204-219.
https://doi.org/10.1111/let.12307
Lindström, M. 1971. Vom Anfang, Hochstand und Ende eines Epikontinentalmeeres. Geologische Rundschau, 60, 419-438.
https://doi.org/10.1007/BF02000464
Lindström, M. & Vortisch, W. 1983. Indications of upwelling in the Lower Ordovician of Scandinavia. In Coastal Upwelling - Its Sediment Record, Part B: Sedimentary Records of Ancient Coastal Upwelling (Thiede, J. & Suess, E., eds), pp. 535-551. Plenum Publishing, New York.
https://doi.org/10.1007/978-1-4613-3709-6_24
Löfgren, A. 1985. Early Ordovician conodont biozonation at Finngrundet, south Bothnian Bay, Sweden. Bulletin of the Geological Institution of the University of Uppsala, 10, 115-128.
Löfgren, A. 1995. The middle Lanna/Volkhov Stage (middle Arenig) of Sweden and its conodont fauna. Geological Magazine, 132, 693-711.
https://doi.org/10.1017/S0016756800018926
Löfgren, A. 2000a. Conodont biozonation in the upper Arenig of Sweden. Geological Magazine, 137, 53-65.
https://doi.org/10.1017/S0016756800003484
Löfgren, A. 2000b. Early to early Middle Ordovician conodont biostratigraphy of the Gillberga quarry, northern Öland, Sweden. GFF, 122, 321-338.
https://doi.org/10.1080/11035890001224321
Löfgren, A. 2003. Conodont faunas with Lenodus variabilis in the upper Arenigian to lower Llanvirnian of Sweden. Acta Palaeontologica Polonica, 48, 417-436.
Löfgren, A. 2004. The conodont fauna in the Middle Ordovician Eoplacognathus pseudoplanus Zone of Baltoscandia. Geological Magazine, 141, 505-524.
https://doi.org/10.1017/S0016756804009227
Löfgren, A. & Zhang, J. 2003. Element association and morphology in some Middle Ordovician platform-equipped conodonts. Journal of Paleontology, 77, 721-737.
https://doi.org/10.1666/0022-3360(2003)077<0721:EAAMIS>2.0.CO;2
Mägi, S. 1984. Kharakteristika stratotipa Ontikaskoj podserii [A characterization of the type section of the Ontika subseries]. Proceedings of the Academy of Sciences of the Estonian SSR, Geology, 33, 104-112 [in Russian, with English summary].
Männik, P. & Viira, V. 2012. Ordovician conodont diversity in the northern Baltic. Estonian Journal of Earth Sciences, 61, 1-14.
https://doi.org/10.3176/earth.2012.1.01
Männil, R. M. 1966. Istoriya razvitiya Baltijskogo bassejna v ordovike [Evolution of the Baltic Basin during the Ordovician]. Eesti NSV Teaduste Akadeemia Geoloogia Instituut, Tallinn, 199 pp. [in Russian with English summary].
Meier, M. M. M., Schmitz, B., Lindskog, A., Maden, C. & Wieler, R. 2014. Cosmic-ray exposure ages of fossil micrometeorites from mid-Ordovician sediments at Lynna River, Russia. Geochimica et Cosmochimica Acta, 125, 338-350.
https://doi.org/10.1016/j.gca.2013.10.026
Mellgren, J. 2011. Conodont biostratigraphy, taxonomy and palaeoecology in the Darriwilian (Middle Ordovician) of Baltoscandia - with focus on meteorite and extraterrestrial chromite-rich strata. Litholund Theses, 21, 1-130.
Mellgren, J. I. S. & Eriksson, M. E. 2010. Untangling a Darriwilian (Middle Ordovician) palaeoecological event in Baltoscandia: conodont faunal changes across the 'Täljsten' interval. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100, 353-370.
https://doi.org/10.1017/S1755691009009074
Mestre, A. & Heredia, S. 2017. New taxonomic insights on the conodont genus Lenodus (lower Darriwilian) from the Precordillera, San Juan, Argentina. In Fourth International Conodont Symposium. ICOS IV. "Progress on Conodont Investigation" (Liao, J.-C. & Valenzuela-Ríos, J. I., eds), Cuadernos del Museo Geominero, 22, 49-53.
Nielsen, A. T. 1995. Trilobite systematics, biostratigraphy and palaeoecology of the Lower Ordovician Komstad Limestone and Huk formations, southern Scandinavia. Fossils and Strata, 38, 1-374.
Nielsen, A. T. 2004. Ordovician sea level changes: a Baltoscandian perspective. In The Great Ordovician Biodiversification Event (Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G., eds), pp. 84-93. Columbia University Press, New York.
https://doi.org/10.7312/webb12678-011
Nielsen, A. T. 2011. A re-calibrated revised sea-level curve for the Ordovician of Baltoscandia. In Ordovician of the World (Gutiérrez-Marco, J. C., Rábano, I. & Garcia-Bellido, D., eds), Publicaciones del Instituto Geológico y Minero de España, Cuadernos del Museo Geominero, 14, 399-401.
Nordlund, U. 1989. Lithostratigraphy and sedimentology of a Lower Ordovician limestone sequence at Hälludden, Öland, Sweden. GFF, 111, 65-94.
https://doi.org/10.1080/11035898909454760
Normore, L. S., Zhen, Y. Y., Dent, L. M., Crowley, J. L., Percival, I. G. & Wingate, M. T. D. 2018. Early Ordovician CA-IDTIMS U-Pb zircon dating and conodont biostratigraphy, Canning Basin, Western Australia. Australian Journal of Earth Sciences, 65, 61-73.
https://doi.org/10.1080/08120099.2018.1411292
Olgun, O. 1987. Komponenten-Analyse und Conodonten-Stratigraphie der Orthoceratenkalksteine im Gebiet Falbygden, Västergötland, Mittelschweden. Sveriges Geologiska Undersökning, Ca 70, 1-78.
Pander, C. H. 1830. Beiträge zur Geognosie des Russischen Reiches. Karl Kray, St. Petersburg, 165 pp.
Pärnaste, H. & Bergström, J. 2013. The asaphid trilobite fauna: its rise and fall in Baltica. Palaeogeography, Palaeoclimatology, Palaeoecology, 389, 64-77.
https://doi.org/10.1016/j.palaeo.2013.06.007
Pärnaste, H., Bergström, J. & Zhou, Z. 2013. High resolution trilobite stratigraphy of the Lower-Middle Ordovician Öland Series of Baltoscandia. Geological Magazine, 150, 509-518.
https://doi.org/10.1017/S0016756812000908
Plado, J., Preeden, U., Pesonen, L. J., Mertanen, S. & Puura, V. 2010. Magnetic history of Early and Middle Ordovician sedimentary sequence, northern Estonia. Geophysical Journal International, 180, 147-157.
https://doi.org/10.1111/j.1365-246X.2009.04406.x
Põlma, L. 1982. Sravnitelˊnaya litologiya karbonatnykh porod ordovika Severnoj i Srednej Pribaltiki [Comparative Lithology of Ordovician Carbonate Rocks in North and Central East Baltic]. Valgus, Tallinn, 152 pp. [in Russian, with English summary].
Popov, L. E. (ed.). 1997. WOGOGOB Excursion Guide: St. Petersburg, Russia, 1997. Uppsala University, Uppsala, 24 pp. (+ figure appendix).
Powers, M. C. 1953. A new roundness scale for sedimentary particles. Journal of Sedimentary Petrology, 23, 117-119.
https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D
Rasmussen, C. M. Ø. & Harper, D. A. T. 2008. Resolving early Mid-Ordovician (Kundan) bioevents in the East Baltic based on brachiopods. Geobios, 41, 533-542.
https://doi.org/10.1016/j.geobios.2007.10.006
Rasmussen, C. M. Ø., Hansen, J. & Harper, D. A. T. 2007. Baltica: a mid Ordovician diversity hotspot. Historical Biology, 19, 255-261.
https://doi.org/10.1080/08912960601151744
Rasmussen, C. M. Ø., Nielsen, A. T. & Harper, D. A. T. 2009. Ecostratigraphical interpretation of lower Middle Ordovician East Baltic sections based on brachiopods. Geological Magazine, 146, 717-731.
https://doi.org/10.1017/S0016756809990148
Rasmussen, C. M. Ø., Ullmann, C. V., Jakobsen, K. G., Lindskog, A., Hansen, J., Hansen, T., Eriksson, M. E., Dronov, A., Frei, R., Korte, C., Nielsen, A. T. & Harper, D. A. T. 2016. Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Scientific Reports, 6, 18884.
https://doi.org/10.1038/srep18884
Rasmussen, C. M. Ø., Kröger, B., Nielsen, M. L. & Colmenar, J. 2019. Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proceedings of the National Academy of Sciences, 116, 7207-7213.
https://doi.org/10.1073/pnas.1821123116
Rasmussen, J. A. 1991. Conodont stratigraphy of the Lower Ordovician Huk Formation at Slemmestad, southern Norway. Norsk Geologisk Tidsskrift, 71, 265-288.
Rasmussen, J. A. & Stouge, S. 1995. Late Arenig-early Llanvirn conodont biofacies across the Iapetus Ocean. In Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System (Cooper, J. D., Droser, M. L. & Finney, S. C., eds), Pacific Section, Society for Sedimentary Geology (SEPM), 77, 443-447.
Rasmussen, J. A. & Stouge, S. 2018. Baltoscandian biofacies and their link to Middle Ordovician (Darriwilian) global cooling. Palaeontology, 61, 391-416.
https://doi.org/10.1111/pala.12348
Rasmussen, J. A., Bruton, D. L. & Nakrem, H. A. 2013. Stop 17. Tremadocian to Darriwilian units, Bjørkåsholmen and Djuptrekkodden, Slemmestad. In The Lower Palaeozoic of Southern Sweden and the Oslo Region, Norway: Field Guide for the 3rd Annual Meeting of the IGCP Project 591 (Calner, M., Ahlberg, P., Lehnert, O. & Erlström, M., eds), Sveriges Geologiska Undersökning Rapporter och meddelanden, 133, 67-72.
Raukas, A. & Teedumäe, A. (eds). 1997. Geology and Mineral Resources of Estonia. Estonian Academy Publishers, Tallinn, 436 pp.
Raymond, P. E. 1916. Expedition to the Baltic provinces of Russia and Scandinavia. Part I. The correlation of the Ordovician strata of the Baltic Basin with those of eastern North America. Bulletin of the Museum of Comparative Zoology, 56, 179-286.
Rozhnov, S. 2017. Cyanobacterial origin and morphology of the Volkhov hardgrounds (Dapingian, middle Ordovician) of the St. Petersburg region (Russia). Bollettino della Società Paleontologica Italiana, 56, 153-160.
Rozhnov, S. V. & Kushlina, V. B. 1994. Interpretation of new data on Bolboporites Pander, 1830 (Echinodermata; Ordovician). In Echinoderms Through Time (Bruno, D., Guille, A., Féral, J.-P. & Roux, M., eds), pp. 179-180. A. A. Balkema, Rotterdam.
Schmidt, F. 1858. Untersuchungen über die silurische Formation von Ehstland, Nord-Livland und Ösel. Archiv für die Naturkunde Liv', Ehst- und Kurlands, Serie 1, 2, 1-248.
Schmidt, F. 1881. Revision der ostbaltischen silurischen Trilobiten nebst geognostischer Übersicht des ostbaltischen Silurgebiets. Abtheilung 1: Phacopiden, Cheiruriden und Encrinuriden. Mémoires de l'Académie Impériale des Sciences de St. Pétersbourg, 30, 1-237.
Schmidt, F. 1882. On the Silurian (and Cambrian) strata of the Baltic provinces of Russia, as compared with those of Scandinavia and the British Isles. Quarterly Journal for the Geological Society, 38, 514-536.
https://doi.org/10.1144/GSL.JGS.1882.038.01-04.51
Schmitz, B. & Häggström, T. 2006. Extraterrestrial chromite in Middle Ordovician marine limestone at Kinnekulle, southern Sweden - traces of a major asteroid breakup event. Meteoritics and Planetary Science, 41, 455-466.
https://doi.org/10.1111/j.1945-5100.2006.tb00473.x
Schmitz, B., Häggström, T. & Tassinari, M. 2003. Sediment-dispersed extraterrestrial chromite traces a major asteroid disruption event. Science, 300, 961-964.
https://doi.org/10.1126/science.1082182
Schmitz, B., Harper, D. A. T., Peucker-Ehrenbrink, B., Stouge, S., Alwmark, C., Cronholm, A., Bergström, S. M., Tassinari, M. & Xiaofeng, W. 2008. Asteroid breakup linked to the Great Ordovician Biodiversification Event. Nature Geoscience, 1, 49-53.
https://doi.org/10.1038/ngeo.2007.37
Selivanova, V. A. & Kofman, L. R. (eds). 1971. Geologiya SSSR, T.1. Leningradskaya, Pskovskaya i Novgorodskaya oblasti. Geologicheskoe opisanie [Geology of the USSR, Volume I, Leningrad, Pskov and Novgorod Regions, Geological Descriptions]. Nedra Publishing House, Moscow, 502 pp. [in Russian].
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7, 36-53.
https://doi.org/10.1017/S0094837300003778
Sepkoski, J. J. Jr. 1995. The Ordovician radiations: diversification and extinction shown by global genus-level taxonomic data. In Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System (Cooper, J. D., Droser, M. L. & Finney, S. C., eds), Pacific Section, Society for Sedimentary Geology (SEPM), 77, 393-396.
Sergeyeva, S. P. 1962. Stratigraphic dispersion of conodonts in the Lower Ordovician of the Leningrad province. Doklady Akademii Nauk SSSR, 146, 1393-1395.
Sibley, D. F. & Gregg, J. M. 1987. Classification of dolomite rock textures. Journal of Sedimentary Petrology, 57, 967-975.
https://doi.org/10.1306/212F8CBA-2B24-11D7-8648000102C1865D
Stigall, A. L., Edwards, C. T., Freeman, R. L. & Rasmussen, C. M. Ø. 2019. Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: Darriwilian assembly of early Paleozoic building blocks. Palaeogeography, Palaeoclimatology, Palaeoecology, 530, 249-270.
https://doi.org/10.1016/j.palaeo.2019.05.034
Stouge, S. & Bagnoli, G. 1990. Lower Ordovician (Volkhovian-Kundan) conodonts from Hagudden, northern Öland, Sweden. Palaeontographica Italica, 77, 1-54.
Stouge, S. & Nielsen, A. T. 2003. An integrated biostratigraphical analysis of the Volkhov-Kunda (Lower Ordovician) succession at Fågelsång, Scania, Sweden. Bulletin of the Geological Society of Denmark, 50, 75-94.
Stouge, S., Bagnoli, G. & Rasmussen, J. A. 2019. Late Cambrian (Furongian) to mid-Ordovician euconodont events on Baltica: invasions and immigrations. Palaeogeography, Palaeoclimatology, Palaeoecology, https://doi.org/10.1016/ j.palaeo.2019.04.007.
https://doi.org/10.1016/j.palaeo.2019.04.007
Sturesson, U. 2003. Lower Palaeozoic iron oolites and volcanism from a Baltoscandian perspective. Sedimentary Geology, 159, 241-256.
https://doi.org/10.1016/S0037-0738(02)00330-5
Sturesson, U., Dronov, A. & Saadre, T. 1999. Lower Ordovician iron ooids and associated oolitic clays in Russia and Estonia: a clue to the origin of iron oolites? Sedimentary Geology, 123, 63-80.
https://doi.org/10.1016/S0037-0738(98)00112-2
Tabor, N. J., Myers, T. S. & Michel, L. A. 2017. Sedimentologist's guide for recognition, description, and classification of paleosols. In Terrestrial Depositional Systems: Deciphering Complexities Through Multiple Stratigraphic Methods (Zeigler, K. E. & Parker, W. G., eds), pp. 165-208. Elsevier, Amsterdam.
https://doi.org/10.1016/B978-0-12-803243-5.00004-2
Teedumäe, A., Shogenova, A. & Kallaste, T. 2006. Dolomitization and sedimentary cyclicity of the Ordovician, Silurian, and Devonian rocks in South Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 55, 67-87.
Tjernvik, T. E. & Johansson, J. V. 1980. Description of the upper portion of the drill-core from Finngrundet in the South Bothnian Bay. Bulletin of the Geological Institutions of the University of Uppsala, N.S., 8, 73-204.
Tolmacheva, T. Yu., Holmer, L. E., Dronov, A. V., Egerquist, E., Fedorov, P. V. & Popov, L. E. 1999. Early Ordovician (Hunneberg-Volkhov) facial and faunal changes in the East Baltic. In Quo vadis Ordovician? Short Papers of the 8th International Symposium on the Ordovician System (Kraft, P. & Fatka, O., eds), Acta Universitatis Carolinae - Geologica, 43, 467-470.
Tolmacheva, T., Egerquist, E., Meidla, T. & Holmer, L. 2001. Spatial variations in faunal composition, Middle Ordovician, Volkhov Stage, East Baltic. GFF, 123, 65-72.
https://doi.org/10.1080/11035890101232065
Tolmacheva, T., Egerquist, E., Meidla, T., Tinn, O. & Holmer, L. 2003. Faunal composition and dynamics in unconsolidated sediments: a case study from the Middle Ordovician of the East Baltic. Geological Magazine, 140, 31-44.
https://doi.org/10.1017/S001675680200701X
Toom, U., Vinn, O. & Hints, O. 2019. Ordovician and Silurian ichnofossils from carbonate facies in Estonia: a collection-based review. Palaeoworld, 28, 123-144.
https://doi.org/10.1016/j.palwor.2018.07.001
Torsvik, T. H. & Cocks, L. R. M. 2017. Earth History and Palaeogeography. Cambridge University Press, Cambridge, 317 pp.
https://doi.org/10.1017/9781316225523
Trubovitz, S. & Stigall, A. L. 2016. Synchronous diversification of Laurentian and Baltic rhynchonelliform brachiopods: implications for regional versus global triggers of the Great Ordovician Biodiversification Event. Geology, 44, 743-746.
https://doi.org/10.1130/G38083.1
van der Plas, L. & Tobi, A. C. 1965. A chart for judging the reliability of point counting results. American Journal of Science, 263, 87-90.
https://doi.org/10.2475/ajs.263.1.87
Viira, V. 2011. Lower and Middle Ordovician conodonts from the subsurface of SE Estonia and adjacent Russia. Estonian Journal of Earth Sciences, 60, 1-21.
https://doi.org/10.3176/earth.2011.1.01
Viira, V., Löfgren, A., Mägi, S. & Wickström, J. 2001. An Early to Middle Ordovician succession of conodont faunas at Mäekalda, northern Estonia. Geological Magazine, 138, 699-718.
https://doi.org/10.1017/S0016756801005945
Villumsen, J., Nielsen, A. T. & Stouge, S. 2001 The trilobite and conodont biostratigraphy of the upper Volkhov-lower Kunda deposits at Hällekis Quarry, Västergötland, Sweden. In WOGOGOB-2001 Abstracts (Harper, D. A. T. & Stouge, S., eds), pp. 30-31. Copenhagen University, Copenhagen.
Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G. (eds). 2004. The Great Ordovician Biodiversification Event. Columbia University Press, New York, 484 pp.
https://doi.org/10.7312/webb12678
Westphal, H., Munnecke, A., Böhm, F. & Bornholdt, S. 2008. Limestone-marl alternations in epeiric sea settings - witnesses of environmental changes, or of rhythmic diagenesis? In Dynamics of Epeiric Seas (Pratt, B. R. & Holmden, C., eds), Geological Association of Canada Special Paper, 48, 389-406.
Westphal, H., Hilgen, F. & Munnecke, A. 2010. An assessment of the suitability of individual rhythmic carbonate successions for astrochronological application. Earth-Science Reviews, 99, 19-30.
https://doi.org/10.1016/j.earscirev.2010.02.001
Wu, R., Stouge, S. & Wang, Z. 2012. Conodontophorid biodiversification during the Ordovician in South China. Lethaia, 45, 432-442.
https://doi.org/10.1111/j.1502-3931.2011.00303.x
Wu, R.-C., Calner, M., Lehnert, O., Lindskog, A. & Joachimski, M. 2018. Conodont biostratigraphy and carbon isotope stratigraphy of the Middle Ordovician (Darriwilian) Komstad Limestone, southern Sweden. GFF, 140, 44-54.
https://doi.org/10.1080/11035897.2018.1435561
Young, T. P. 1992. Ooidal ironstones from Ordovician Gondwana: a review. Palaeogeography, Palaeoclimatology, Palaeoecology, 99, 321-347.
https://doi.org/10.1016/0031-0182(92)90021-V
Zaitsev, A. V. & Kosorukov, V. L. 2008. Condensed Lower-Middle Ordovician carbonate deposits in the northwest of the Russian Platform: characteristics of the clay component. Moscow University Geology Bulletin, 63, 38-48.
Zaitsev, A. V. & Pokrovsky, B. G. 2014. Carbon and oxygen isotope compositions of Lower-Middle Ordovician carbonate rocks in the northwestern Russian Platform. Lithology and Mineral Resources, 49, 272-279.
https://doi.org/10.1134/S0024490214030079
Zhang, J. 1997. The lower Ordovician conodont Eoplacognathus crassus Chen & Zhang, 1993. GFF, 119, 61-65.
https://doi.org/10.1080/11035899709546455
Zhang, J. 1998a. Conodonts from the Guniutan Formation (Llanvirnian) in Hubei and Hunan provinces, south-central China. Stockholm Contribution in Geology, 46, 1-161.
Zhang, J. 1998b. Middle Ordovician conodonts from the Atlantic faunal region and the evolution of key conodont genera. Meddelanden från Stockholms universitets institution för geologi och geokemi, 298, 1-27.