ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Engineering geological and geotechnical properties of till soil of the Middle Pleistocene glacial period; pp. 101–111
PDF | https://doi.org/10.3176/earth.2019.09

Authors
Ieva Lekstutytė, Saulius Gadeikis, Gintaras Žaržojus, Šarunas Skuodis
Abstract

Glacial deposits make up the biggest volume of deposits of the Quaternary system in Lithuania. The deposits of the Medininkai glacial period are spread across the entire territory of Lithuania, but occur on the surface only in the southeastern area. The main purpose of this study is to explore the stiffness and deformation of till soils of the Medininkai glacial period and compare the obtained values with the glacial till soil properties presented in the literature. The triaxial cell apparatus, direct shear apparatus and oedometer test apparatus were used for soil investigation in order to achieve the aim of the study. During the in-situ tests the cone penetration test was performed and the borehole was described. Such physical properties of soil as bulk density and moisture content were evaluated, the plastic and liquid limits were established and the grain size distribution of soil was analysed. The mechanical properties of soil were investigated with several different devices; one-dimensional compression, direct shear and triaxial cell tests were performed. The results showed no significant difference between the data obtained during the triaxial cell test and the data obtained from the direct shear test. A significant difference was noticed between the values of the secant modulus E50 calculated during the triaxial cell test and the values of the oedometer modulus Eoed obtained during the oedometer test and those presented in the literature; therefore these values should be considered very carefully. No significant difference was observed between the values of E50 and Eoed obtained during the oedometer test by applying the similar loading intervals. The comparison of Eoed values calculated during the cone resistance test with the results obtained during the E50 and Eoed oedometer test led to similar results. A summary of the results regarding the mechanical properties of till soils of the Medininkai glacial period shows that values obtained by different laboratory methods may be correlated, but may be rarely compared with values presented in the literature.

References

Bajestani, M. S., Yazdani, M. & Golshani, A. 2018. Experimental determination of shear strength properties of lightweight expanded clay aggregates using direct shear and triaxial tests. International Journal of Geotechnical and Geological Engineering, 12, 107–113.

Bičkauskas, G., Brazauskas, A., Kleišmantas, A. & Motuza, G. 2011. Bendrosios geologijos pratybos [General Geology Exercise Book]. Vilniaus universiteto leidykla, Vilnius, 174 pp. [in Lithuanian].

Bucevičienė, S., Marcinkevičius, V. & Dansevičienė, D. 1997. Lietuvos inžinerinis geologinis žemėlapis, M 1:500 000 [Engineering Geological Map of Lithuania, scale 1:500 000]. Lietuvos Geologijos Tarnyba [in Lithuanian].

[CEN] European Committee for Standardization. 2004a. CEN ISO/TS 17892-4:2004. Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 4: Deter­mination of Particle Size Distribution. ISO, Geneva.

[CEN] European Committee for Standardization. 2004b. CEN ISO/TS 17892-12:2004. Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 12: Deter­mination of Attenberg Limits. ISO, Geneva.

[CEN] European Committee for Standardization. 2007. CEN EN 1997-2:2007. Eurocode 7. Geotechnical Design – Part 2: Ground Investigation and Testing. CEN, Brussels.

[CEN] European Committee for Standardization. 2017. CEN ISO/TS 17892-5:2017. Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 5: Incremental Loading Oedometer Test. ISO, Geneva.

[CEN] European Committee for Standardization. 2018. CEN ISO/TS 17892-10:2018. Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 10: Direct Shear Tests. ISO, Geneva.

Ding, J., Feng, X., Cao, Y., Qian, S. & Ji, F. 2018. Consolidated undrained triaxial compression tests and strength criterion of solidified dredged materials. Advances in Civil Engineering, 2018, 9130835.
https://doi.org/10.1155/2018/9130835

Ehlers, J., Gibbard, P. L. & Hughes, P. D. 2011. Quaternary Glaciations Extent and Chronology. Vol. 15, 1st ed. Elsevier, 1126 pp.
https://doi.org/10.1016/B978-0-444-53447-7.00001-5

Favero, V., Ferrari, A. & Laloui, L. 2018. Anisotropic behaviour of opalinus clay through consolidated and drained triaxial testing in saturated conditions. Rock Mechanics and Rock Engineering, 51, 1305–1319.
https://doi.org/10.1007/s00603-017-1398-5

Garboczi, E. J., Forster, A. M., Stutzman, P. E. & Erdogan, S. T. 2017. Particle-based characterization of Ottawa sand: shape, size, mineralogy, and elastic moduli. Cement and Concrete Composites, 83, 36–44.
https://doi.org/10.1016/j.cemconcomp.2017.07.003

Geotestus. 2017. Kogeneracinė jėgainė Jočionių g. 13, Vilnius [Cogeneration Power Station at Jocioniu St. 13]. Unpublished report, JCS Geotestus [in Lithuanian].

Grigelis, A., Gailius, R. & Kadūnas, V. 1994. Lietuvos geologija: monografija [The Geology of Lithuania: A Monograph]. Mokslo ir enciklopedijų leidykla, Vilnius, 447 pp. [in Lithuanian].

Guobytė, R., Aleksa, P. & Satkūnas, J. 2001. Lietuvos paviršiaus genetinių, litologinių ir stratigrafinių tipų gruntų paplitimo analizė [Distribution of Quaternary deposits in Lithuania according to their age, genetic types and lithological varieties]. Geografijos Metraštis, 34(2), 57–67 [in Lithuanian, with English summary].

Helle, T. E., Long, M. & Nordal, S. 2018. Interpreting improved geotechnical properties from RCPTUs in KCl-treated quick clays. In Proceedings of the 4th International Symposium on Cone Penetration Testing, pp. 339345. Delft, Netherlands.

Kalm, V., Raukas, A., Rattas, M. & Lasberg, K. 2011. Pleistocene glaciations in Estonia. In Quaternary Glaciations Extent and Chronology. A Closer Look (Ehlers, J., Gibbard, P. L. & Hughes, P. D., eds), Develop­ments in Quaternary Science, 15, 95–104.
https://doi.org/10.1016/B978-0-444-53447-7.00008-8

Kasparinskis, R. & Nikodemus, O. (eds). 2017. International WRB Soil Classification Field Workshop in Latvia and Estonia. University of Latvia, Estonian University of Life Sciences, 112 pp.

Kavoliutė, F. 2012. Lietuvos Gamtinis Pamatas, I dalis Gelmės ir paviršius [Natural Foundation of Lithuania, Part I – Depth and Surface]. Vilnius University, Vilnius, 90 pp. [in Lithuanian].

Kim, J., Choi, C., Kang, J., Baek, W. & Chung, M. 2016. Model test for the observation of cavity formation in sandy ground – with reference to ground water level and relative density. In The 6th Japan–Korea Geotechnical Workshop (Fujisawa, K., Cho, W., Katsumi, T. & Chung, M., eds), Japanese Geotechnical Society Special Publication, 4, 64–67.
https://doi.org/10.3208/jgssp.v04.k02

Lee, L. M., Yasuo, T., Wei, L. C. & Yuan, L. C. 2016. Development of data acquisition system for consolidated undrained triaxial test. In Proceedings of the IOP Conference Series: Materials Science and Engineering, 136, 12–19.
https://doi.org/10.1088/1757-899X/136/1/012019

Lekstutytė, I., Gadeikis, S., Žaržojus, G. & Skuodis, Š. 2018. Some mechanical properties of Medininkai glacial period overconsolidated moraine clay. In Proceedings of 26th European Young Geotechnical Engineers Conference, pp. 83–92. Graz University of Technology, Graz.

LST EN ISO 14688-2:2007 lt. Geotechniniai tyrinėjimai ir bandymai. Gruntų identifikavimas ir klasifikavimas. 2 dalis. Klasifikavimo principai (ISO 14688-2:2004). [Geotechnical Investigation and Testing. Identification and Classification of Soil. Part 2: Principles for a Classification] [in Lithuanian].

Marks, L., Dzierżek, J., Janiszewski, R., Kaczorowski, J., Lindner, L., Majecka, A., Makos, M., Szymanek, M., Tołoczko-Pasek, A. & Woronko, B. 2016. Quaternary stratigraphy and palaeogeography of Poland. Acta Geologica Polonica, 66(3), 403-427.
https://doi.org/10.1515/agp-2016-0018

Ojuri, O. O. & Agbolade, O. C. 2015. Improvement of engineering properties of Igbokoda standard sand with shredded polyethylene wastes. Nigeria Journal of Technology, 34, 443–451.
https://doi.org/10.4314/njt.v34i3.3

Pei-Yong, L. & Qing, Y. 2009. The study on soilwater characteristic curve of bentonite-sand mixtures. Electronic Journal of Geotechnical Engineering, 14, 1–8.

Putys, P., Satkūnas, J. & Jusienė, A. 2010. Lietuvos kvartero storymės geologinių struktūrų tūrio įvertinimas [Assessing the volumes of geological structure of the Quaternary in Lithuania]. Geologijos Akiračiai, 3-4, 20-30 [in Lithuanian, with English summary].

Rahman, A. S. A., Noor, M. J. M., Jais, I. B. M., Sidek, N. & Ahmad, J. 2018. Shear strength of granitic residual soil in saturated and unsaturated conditions. In Proceedings of International Conference on Advances in Civil Engineering and Science Technology, ICACEST, AIP Conference Proceedings, 2020, 020003.
https://doi.org/10.1063/1.5062629

Satkūnas, J. 2009. Lietuvos Kvartero stratigrafijos schema [Quaternary Stratigraphic Scheme of Lithuania]. Vilnius, 13 pp. [in Lithuanian].

Sibul, I., Plado, J. & Jõeleht, A. 2017. Ground-penetrating radar and electrical resistivity tomography for mapping bedrock topography and fracture zones: a case study in Viru-Nigula, NE Estonia. Estonian Journal of Earth Sciences, 66, 142–151.
https://doi.org/10.3176/earth.2017.11

Šimkus, J., Alikonis, A. & Sidauga, B. 1973. Lietuvos TSR gruntų statybinės savybės [Lithuanian TSR Soils Structural Characteristics]. Mintis, Vilnius, 146 pp. [in Lithuanian].

Skels, P. & Bondars, K. 2017. Applicability of small strain stiffness parameters for pile settlement calculation. Procedia Engineering, 172, 999–1006.
https://doi.org/10.1016/j.proeng.2017.02.149

Sližytė, D., Medzvieckas, J. & Mackevičius, R. 2012. Pamatai ir pagrindai [Foundation and Base]. Technika, Vilnius, 248 pp. [in Lithuanian].

Soltani, A., Taheri, A., Deng, A. & Nikraz, H. 2019. Tyre rubber and expansive soils: two hazards, one solution. In Proceedings of the Institution of Civil Engineers Construction Materials.
https://doi.org/10.1680/jcoma.18.00075

Standing, J. R. 2018. Identification and implications of the London Clay Formation divisions from an engineering perspective. In Proceedings of the Geologists Association,
https://doi.org/10.1016/j.pgeola.2018.08.007

Tsiampousi, A., Zdravkovic, L. & Potts, D. M. 2017. A numerical study of the effect of soil atmosphere interaction on the stability and serviceability of cut slopes in London clay. Canadian Geotechnical Journal, 54, 405–418.
https://doi.org/10.1139/cgj-2016-0319

Wu, S., Zhou, A., Li, J., Kodikara, J. & Cheng, J. W. 2018. Hydromechanical behaviour of overconsolidated un­saturated soil in undrained conditions. Canadian Geo­technical Journal,
https://doi.org/10.1139/cgj-2018-0323.

Xia, W.-Y., Feng, Y.-S., Liu, M. D. & Du, Y.-J. 2018. Stress-strain relation and strength prediction method of a KMP stabilized Zn, Pb and Cd contaminated site soil. In Proceedings of GeoShanghai 2018 International Conference: Geoenvironment and Geohazard, pp. 335–345.
https://doi.org/10.1007/978-981-13-0128-5_38

Youwei, X., Shengshen, W., Williams, D. J. & Serati, M. 2018. Determination of peak and ultimate shear strength parameters of compacted clay. Engineering Geology, 243, 160–167.
https://doi.org/10.1016/j.enggeo.2018.07.001

Zelčs, V. & Nartišs, M. 2014. Outlines of the Quaternary geology of Latvia. In Late Quaternary Terrestrial Processes, Sediments and History: from Glacial to Postglacial Environments (Zelčs, V. & Nartišs, M., eds), pp. 9-15. University of Latvia, Riga.
https://doi.org/10.22364/lqtpsh.2014.16

Zelčs, V., Markots, A., Nartišs, M. & Saks, T. 2011. Pleistocene glaciations in Latvia. Quaternary Glaciations –Extent and Chronology. A Closer Look (Ehlers, J., Gibbard, P. L. & Hughes, P. D., eds), Developments in Quaternary Science, 15, 221229.
https://doi.org/10.1016/B978-0-444-53447-7.00018-0

Zhang, J., Soltani, A., Deng, A. & Jaksa, M. B. 2019. Mechanical performance of jute fiber-reinforced micaceous clay composites treated with ground-granulated blast-furnace slag. Materials, 12(4), 576.
https://doi.org/10.3390/ma12040576

 

Back to Issue