Since the early 1980s, attempts to develop a method for the retrospective estimation of water chemistry have been increasingly discussed in terms of bivalve sclerochronology. Although the problem with the interpretation of chemical data from shell growth patterns remains unsolved and a method, or at least its concept, has never been proposed, the optimism about the potential of the bivalve shell as a possible tool in retrospective environmental monitoring has reached the apogee nowadays. Here, we provide a review of the changes in the conceptual framework of the bivalve sclerochronology during more than thirty-five years of studies in the field, together with the analysis of the meaning of the key term ‘sclerochronology’. The new term, ‘sclerochronochemistry’ (skleros – hard, chronos – time, and chemistry), is proposed in order to fill a gap between sclerochronology and sclerochemistry.
Andrus, C. F. T. 2011. Shell midden sclerochronology. Quaternary Science Reviews, 30, 2892–2905.
https://doi.org/10.1016/j.quascirev.2011.07.016
Beyer, J., Green, N. W., Brooks, S., Allan, I. J., Ruus, A., Gomes, T., Bråte, I. L. N. & Schøyen, M. 2017. Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: a review. Marine Environmental Research, 130, 338–365.
Binelli, A., Della Torre, C., Magni, S. & Parolini, M. 2015. Does zebra mussel (Dreissena polymorpha) represent the freshwater counterpart of Mytilus in ecotoxicological studies? A critical review. Environmental Pollution, 196, 386–403.
https://doi.org/10.1016/j.envpol.2014.10.023
Buddemeier, R. W., Maragos, J. E. & Knutson, D. W. 1974. Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. Journal of Experimental Marine Biology and Ecology, 14, 179–200.
https://doi.org/10.1016/0022-0981(74)90024-0
Butler, P. G. & Schöne, B. R. 2017. New research in the methods and applications of sclerochronology. Palaeogeography, Palaeoclimatology, Palaeoecology, 465, 295–299.
https://doi.org/10.1016/j.palaeo.2016.11.013
Butler, P. G., Freitas, P. S., Burchell, M. & Chauvaud, L. 2019. Chapter 21: Archaeology and sclerochronology of marine bivalves. In Goods and Services of Marine Bivalves (Smaal, A. C., Ferreira, J. G., Grant, J., Petersen, J. K. & Strand, Ø., eds), pp. 413–444. Springer Open.
https://doi.org/10.1007/978-3-319-96776-9_21
Carell, B., Forberg, S., Grundelius, E., Henrikson, L., Johnels, A., Lindh, U., Mutvei, H., Olsson, M., Svärdström, K. & Westermark, T. 1987. Can mussel shells reveal environmental history? Ambio, 16, 2–10.
Carriker, M. R., Swann, C. P. & Ewart, J. W. 1982. An exploratory study with the proton microprobe of the ontogenetic distribution of 16 elements in the shell of living oysters (Crassostrea virginica). Marine Biology, 69, 235–246.
https://doi.org/10.1007/BF00397489
Carroll, M. & Romanek, C. S. 2008. Shell layer variation in trace element concentration for the freshwater bivalve Elliptio complanata. Geo-Marine Letters, 28, 369–381.
https://doi.org/10.1007/s00367-008-0117-3
Delong, M. D. & Thorp, J. H. 2009. Mollusc shell periostracum as an alternative to tissue in isotopic studies. Limnology and Oceanography: Methods, 7, 436–441.
https://doi.org/10.4319/lom.2009.7.436
Dunca, E., Mutvei, H., Göransson, P., Mörth, C.-M., Schöne, B. R., Whitehouse, M. J., Elfman, M. & Baden, S. P. 2009. Using ocean quahog (Arctica islandica) shells to reconstruct palaeoenvironment in Öresund, Kattegat and Skagerrak, Sweden. International Journal of Earth Sciences (Geologische Rundschau), 98, 3–17.
https://doi.org/10.1007/s00531-008-0348-6
Fenger, T., Surge, D., Schöne, B. R. & Milner, N. 2007. Sclerochronology and geochemical variation in limpet shells (Patella vulgata): a new archive to reconstruct coastal sea surface temperature. Geochemistry, Geophysics, Geosystems, 8, 1–17.
Fritts, H. C., Blasing, T. J., Hayden, B. P. & Kutzbach, J. E. 1971. Multivariate techniques for specifying tree-growth and climate relationships and for reconstructing anomalies in paleoclimate. Journal of Applied Meteorology, 10, 845–864.
Füllenbach, C. S., Schöne, B. R., Shirai, K., Takahata, N., Ishida, A. & Sano, Y. 2017. Minute co-variations of Sr/Ca ratios and microstructures in the aragonitic shell of Cerastoderma edule (Bivalvia) – Are geochemical variations at the ultra-scale masking potential environmental signals? Geochimica et Cosmochimica Acta, 205, 256–271.
https://doi.org/10.1016/j.gca.2017.02.019
Geeza, T. J., Gillikin, D. P., Goodwin, D. H., Evans, S. D., Watters, T. & Warner, N. R. 2018. Controls on magnesium, manganese, strontium, and barium concentrations recorded in freshwater mussel shells from Ohio. Chemical Geology, doi: 10.1016/j.chemgeo.2018.01.001
https://doi.org/10.1016/j.chemgeo.2018.01.001
Gillikin, D. P., Dehairs, F., Lorrain, A., Steenmans, D., Baeyens, W. & André, L. 2006. Barium uptake into the shells of the common mussel (Mytilus edulis) and the potential for estuarine paleo-chemistry reconstruction. Geochimica et Cosmochimica Acta, 70, 395–407.
https://doi.org/10.1016/j.gca.2005.09.015
Goodwin, D. H., Gillikin, D. P. & Roopnarine, P. D. 2013. Preliminary evaluation of potential stable isotope and trace element productivity proxies in the oyster Crassostrea gigas. Palaeogeography, Palaeoclimatology, Palaeoecology, 373, 88–97.
https://doi.org/10.1016/j.palaeo.2012.03.034
Gröcke, D. R. & Gillikin, D. P. 2008. Advances in mollusc sclerochronology and sclerochemistry: tools for understanding climate and environment. Geo-Marine Letters, 28, 265–268.
https://doi.org/10.1007/s00367-008-0108-4
Helmle, K. P. & Dodge, R. E. 2011. Sclerochronology. In Encyclopedia of Modern Coral Reefs (Hopley, D., ed.), pp. 958–966. Springer, Netherlands.
https://doi.org/10.1007/978-90-481-2639-2_22
Holland, H. A., Schöne, B. R., Marali, S. & Jochum, K. P. 2014. History of bioavailable lead and iron in the Greater North Sea and Iceland during the last millennium – A bivalve sclerochronological reconstruction. Marine Pollution Bulletin, 87, 104–116.
https://doi.org/10.1016/j.marpolbul.2014.08.005
Huck, S. & Heimhofer, U. 2015. Improving shallow-water carbonate chemostratigraphy by means of rudist bivalve sclerochemistry. Geochemistry, Geophysics, Geosystems, 16, 3111–3128.
https://doi.org/10.1002/2015GC005988
Hudson, J. H., Shinn, E. A., Halley, R. B. & Lidz, B. 1976. Sclerochronology: a tool for interpreting past environments. Geology, 4, 361–364.
https://doi.org/10.1130/0091-7613(1976)4<361:SATFIP>2.0.CO;2
Immenhauser, A., Schöne, B. R., Hoffmann, R. & Niedermayr, A. 2016. Mollusc and brachiopod skeletal hard parts: intricate archives of their marine environment. Sedimentology, 63, 1–59.
Karney, G. B., Butler, P. G., Scourse, J. D., Richardson, C. A., Lau, K. H., Czernuszka, J. T. & Grovenor, C. R. M. 2011. Identification of growth increments in the shell of the bivalve mollusk Arctica islandica using backscattered electron imaging. Journal of Microscopy, 241, 29–36.
https://doi.org/10.1111/j.1365-2818.2010.03403.x
Kelemen, Z., Gillikin, D. P. & Bouillon, S. 2018. Relationship between river water chemistry and shell chemistry of two tropical African freshwater bivalve species. Chemical Geology.
https://doi.org/10.1016/j.chemgeo.2018.04.026
Koide, M., Lee, D. S. & Goldberg, E. D. 1982. Metal and transuranic records in mussel shells, byssal threads and tissue. Estuarine, Coastal and Shelf Science, 15, 679–695.
https://doi.org/10.1016/0272-7714(82)90079-8
Marali, S., Schöne, B. R., Mertz-Kraus, R., Griffin, S. M., Wanamaker, A. D., Butler, P. G., Holland, H. A. & Jochum, K. P. 2017. Reproducibility of trace element time-series (Na/Ca, Mg/Ca, Mn/Ca, Sr/Ca, and Ba/Ca) within and between specimens of the bivalve Arctica islandica – A LA-ICP-MS line scan study. Palaeogeography, Palaeoclimatology, Palaeoecology, 484, 109–128.
https://doi.org/10.1016/j.palaeo.2016.11.024
Oschmann, W. 2009. Sclerochronology: editorial. International Journal of Earth Sciences (Geologische Rundschau), 98, 1–2.
https://doi.org/10.1007/s00531-008-0403-3
Piwoni-Piórewicz, A., Kukliński, P., Strekopytov, S., Humphreys-Williams, E., Najorka, J. & Iglikowska, A. 2017. Size effect on the mineralogy and chemistry of Mytilus trossulus shells from the southern Baltic Sea: implications for environmental monitoring. Environmental Monitoring and Assessment, 189: 197, 1–17.
Prendergast, A. L. & Schöne, B. R. 2017. Oxygen isotopes from limpet shells: implications for palaeothermometry and seasonal shellfish foraging studies in the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 484, 33–47.
Prendergast, A. L., Versteegh, E. A. A. & Schöne, B. R. 2017. New research on the development of high-resolution palaeoenvironmental proxies from geochemical properties of biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, 484, 1–6.
https://doi.org/10.1016/j.palaeo.2017.05.032
Ricardo, F., Pimentel, T., Génio, L. & Calado, R. 2017. Spatio-temporal variability of trace elements fingerprints in cockle (Cerastoderma edule) shells and its relevance for tracing geographic origin. Scientific Reports, 7: 3475, 1–9.
https://doi.org/10.1038/s41598-017-03381-w
Roger, L. M., George, A. D., Shaw, J., Hart, R. D., Roberts, M., Becker, T., McDonald, B. J. & Evans, N. J. 2017. Geochemical and microstructural characterisation of two species of cool-water bivalves (Fulvia tenuicostata and Soletellina biradiata) from Western Australia. Biogeosciences, 14, 1721–1737.
https://doi.org/10.5194/bg-14-1721-2017
Schöne, B. R. 2008. The curse of physiology – challenges and opportunities in the interpretation of geochemical data from mollusk shells. Geo-Marine Letters, 28, 269–285.
https://doi.org/10.1007/s00367-008-0114-6
Schöne, B. R. & Gillikin, D. P. 2013. Unraveling environmental histories from skeletal diaries – Advances in sclerochronology. Palaeogeography, Palaeoclimatology, Palaeoecology, 373, 1–5.
https://doi.org/10.1016/j.palaeo.2012.11.026
Schöne, B. R. & Krause, R. A. 2016. Retrospective environmental biomonitoring – Mussel Watch expanded. Global and Planetary Change, 144, 228–251.
https://doi.org/10.1016/j.gloplacha.2016.08.002
Schöne, B. R. & Surge, D. M. 2012. Part N, Revised, Vol. 1, Chapter 14: Bivalve sclerochronology and geochemistry. Treatise Online, 46, 1–24,.
Schöne, B. R. & Surge, D. 2014. Bivalve shells: ultra high-resolution paleoclimate archives. Past Global Changes Magazine, 22, 20–21.
Schöne, B. R., Rodland, D. L., Wehrmann, A., Heidel, B., Oschmann, W., Zhang, Z., Fiebig, J. & Beck, L. 2007. Combined sclerochronologic and oxygen isotope analysis of gastropod shells (Gibbula cineraria, North Sea): life-history traits and utility as a high-resolution environmental archive for kelp forests. Marine Biology, 150, 1237–1252.
https://doi.org/10.1007/s00227-006-0435-9
Schöne, B. R., Zhang, Z., Jacob, D., Gillikin, D. P., Tütken, T., Garbe-Schönberg, D., McConnaughey, T. & Soldati, A. 2010. Effect of organic matrices on the determination of the trace element chemistry (Mg, Sr, Mg/Ca, Sr/Ca) of aragonitic bivalve shells (Arctica islandica) – Comparison of ICP-OES and LA-ICP-MS data. Geochemical Journal, 44, 23–37.
https://doi.org/10.2343/geochemj.1.0045
Shirai, K., Takahata, N., Yamamoto, H., Omata, T., Sasaki, T. & Sano, Y. 2008. Novel analytical approach to bivalve shell biogeochemistry: a case study of hydrothermal mussel shell. Geochemical Journal, 42, 413–420.
https://doi.org/10.2343/geochemj.42.413
Steinhardt, J., Butler, P. G., Carroll, M. L. & Hartley, J. 2016. The application of long-lived bivalve sclerochronology in environmental baseline monitoring. Frontiers in Marine Science, 3: 176, 1–26.
Stevenson, A. & Brown, L. 2007. Shorter Oxford English Dictionary on Historical Principles. Oxford University Press, Oxford, 3742 pp.
Thomas, K. D. 2015. Molluscs emergent, Part I: themes and trends in the scientific investigation of mollusc shells as resources for archaeological research. Journal of Archaeological Science, 56, 133–140.
https://doi.org/10.1016/j.jas.2015.01.024
https://doi.org/10.1016/j.jas.2015.01.015
Twaddle, R. W., Ulm, S., Hinton, J., Wurster, C. M. & Bird, M. I. 2016. Sclerochronological analysis of archaeological mollusk assemblages: methods, applications and future prospects. Archaeological and Anthropological Sciences, 8, 359–379.
https://doi.org/10.1007/s12520-015-0228-5
Vander Putten, E., Dehairs, F., Keppens, E. & Baeyens, W. 2000. High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: environmental and biological controls. Geochimica et Cosmochimica Acta, 64, 997–1011.
https://doi.org/10.1016/S0016-7037(99)00380-4
Wanamaker, A. D. & Gillikin, D. P. 2018. Strontium, magnesium, and barium uptake in aragonitic shells of Arctica islandica: insights from a temperature controlled experiment. Chemical Geology, doi: 10.1016/j.chemgeo.2018.02.012
https://doi.org/10.1016/j.chemgeo.2018.02.012
Zhao, L., Schöne, B. R. & Mertz-Kraus, R. 2017. Controls on strontium and barium incorporation into freshwater bivalve shells (Corbicula fluminea). Palaeogeography, Palaeoclimatology, Palaeoecology, 465, 386–394.
https://doi.org/10.1016/j.palaeo.2015.11.040
Zuykov, M. A., Pelletier, E., Rouleau, C., Popov, L., Fowler, S. W. & Orlova, M. 2009. Autoradiographic study of 241Am distribution in the shell of the freshwater zebra mussel Dreissena polymorpha exposed under laboratory conditions. Microchimica Acta, 167, 173–178.
https://doi.org/10.1007/s00604-009-0239-y
Zuykov, M., Pelletier, E., St-Louis, R., Checa, A. & Demers, S. 2012. Biosorption of thorium on the external shell surface of bivalve mollusks: the role of shell surface microtopography. Chemosphere, 86, 680–683.
https://doi.org/10.1016/j.chemosphere.2011.11.023
Zuykov, M., Pelletier, E. & Harper, D. A. T. 2013. Bivalve mollusks in metal pollution studies: from bioaccumulation to biomonitoring. Chemosphere, 93, 201–208.
https://doi.org/10.1016/j.chemosphere.2013.05.001