ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
A siliciclastic shallow-marine turbidite on the carbonate shelf of the Ordovician Baltoscandian palaeobasin; pp. 1–14
PDF | 10.3176/earth.2019.01

Authors
Kairi Põldsaar, Leho Ainsaar, Reet Nemliher, Oive Tinn, Ģirts Stinkulis
Abstract

 

A metre-scale thick siltstone–sandstone lobe is described within the Dapingian outer ramp argillaceous limestone facies of the Baltoscandian palaeobasin. This bed is referred to as the Volkhov Oil Collector in previous studies due to its hydrocarbon accumulation potential. It formed on the palaeoslope of the regional Jelgava Depression, which represents an elongated axial region of the deepest part of the Ordovician Baltoscandian sedimentary basin. Sedimentological and petrological analysis of this siliciclastic bed in core sections shows that it was deposited as a result of a single event of turbidite flow. The internal structure of the turbidite bed follows the classical Bouma divisions of the turbidite sequence model. The triggers of this single siliciclastic turbidite bed within a tectonically inactive shallow carbonate basin are analysed. It is concluded that a rare tsunami might have eroded and transported sediments in suspension from land to shallow sea. Suspension fallout would have evolved into a density flow and later into a turbidity current that travelled into the deeper parts of the basin, depositing siliciclastic material at the slope of the Jelgava Depression. The occurrence of the Volkhov Oil Collector turbidite bed on the tectonically relatively stable and flat-bottomed Baltoscandian palaeobasin suggests that turbidite events can take place in rare cases also in epicontinental environments.

 

References

 

Aalto, K. R., Aalto, R., Garrison-Laney, C. E. & Abramson, H. F. 1999. Tsunami(?) sculpturing of the pebble beach wave‐cut platform, Crescent City area, California. The Journal of Geology, 107, 607–622.
https://doi.org/10.1086/314365

Ainsaar, L., Meidla, T., Tinn, O. & Stinkulis, G. 2002a. The “Volkhov Collector” in Western Latvia – a siliciclastic turbidite bed in the Ordovician epeiric carbonate basin. In Basin Stratigraphy Modern Methods and Problems; The Fifth Baltic Stratigraphical Conference, Vilnius (Satkunas, J. & Lasauskiene, J., eds), pp. 11–13. Vilnius University, Vilnius.

Ainsaar, L., Suuroja, K. & Semidor, M. 2002b. Long-term effect of the Kärdla Crater (Hiiumaa, Estonia) on Late Ordovician carbonate sedimentation. Deep-Sea Research. Part II: Topical Studies in Oceanography, 49, 1145–1155.
https://doi.org/10.1016/S0967-0645(01)00135-7

Allen, J. R. 1982. Sedimentary Structures, Their Charac­teristics and Physical Basis. Vol. 2. Developments in Sedimentology, 30B, Elsevier, Amsterdam, 663 pp.

Alwmark, C., Schmitz, B. & Kirsimäe, K. 2010. The mid-Ordovician Osmussaar breccia in Estonia linked to the disruption of the L-chondrite parent body in the asteroid belt. Bulletin of the Geological Society of America, 122, 1039–1046.
https://doi.org/10.1130/B30040.1

Anketell, J. M., Cegla, J. & Dzulynski, S. 1970. On the deformational structures in systems with reversed density gradients. Rocznik Polskiego Towarzystwa Geologicznego, 40, 3–30.

Bahlburg, H. & Spiske, M. 2012. Sedimentology of tsunami inflow and backflow deposits: key differences revealed in a modern example. Sedimentology, 59, 1063–1086.
https://doi.org/10.1111/j.1365-3091.2011.01295.x

Bakhtiar, M. A. & Karim, K. H. 2007. Evidence of tempestite and possible turbidite in the Middle Miocene lagoonal deposits of lower Fars Formation, Kurdistan region, NE-Iraq. Germena II, 2, 745–756.

Bouma, A. H. 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 168 pp.

Chan, M. A. & Dott, R. H. 1983. Shelf and deep-sea sedi­mentation in Eocene forearc basin, western Oregon – Fan or no fan? American Association of Petroleum Geologists Bulletin, 67, 2100–2116.

Domżalski, J., Modliński, Z., Pokorski, J. & Szymański, B. 2004. The siliciclastic rocks of the Upper Arenig (Volkhovian) from offshore bore-hole B5-1/01 (N Poland). Przeglad Geologiczny, 52, 151–159 [in Polish].

Dronov, A., Ainsaar, L., Kaljo, D., Meidla, T., Saadre, T. & Einasto, R. 2011. Ordovician of Baltoscandia: facies, sequences and sea-level changes. In Ordovician of the World (Gutierrez-Marco, J. C., Rabano, I. & Garcia-Bellido, D., eds), Del Museo Geominero, Madrid, 14, 143–150.

Dypvik, H. & Jansa, L. F. 2003. Sedimentary signatures and processes during marine bolide impacts: a review. Sedi­mentary Geology, 161, 309–337.

Dypvik, H., Sandbakken, P. T., Postma, G. & Mørk, A. 2004. Early post-impact sedimentation around the central high of the Mjølnir impact crater (Barents Sea, Late Jurassic). Sedimentary Geology, 168, 227–247.
https://doi.org/10.1016/j.sedgeo.2004.03.009

Gersonde, R., Kyte, F. T., Bleil, U., Diekmann, B., Flores, J. A., Gohl, K., Grahl, G., Hagen, R., Kuhn, G., Sierro, F. J., Volker, D., Abelmann, A. & Bostwick, J. A. 1997. Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean. Nature, 390, 357–363.
https://doi.org/10.1038/37044

Goldfinger, C., Nelson, C. H., Morey, A. E., Johnson, J. E., Patton, J. R., Karabanov, E., Gutiérrez-Pastor, J., Eriksson, A. T., Gràcia, E., Dunhill, G., Enkin, R. J., Dallimore, A. & Vallier, T. 2012. Turbidite Event History – Methods and Implications for Holocene Paleoseismicity of the Cascadia Subduction Zone. U.S. Geological Survey Professional Paper 1661-F, 170 pp.
https://doi.org/10.3133/pp1661F

Greb, S. F. & Archer, A. W. 2007. Soft-sediment deformation produced by tides in a meizoseismic area, Turnagain Arm, Alaska. Geology, 35, 435–438.
https://doi.org/10.1130/G23209A.1

Guyard, H., St-Onge, G., Chapron, E., Anselmetti, F. S. & Francus, P. 2007. The Ad 1881 earthquake-triggered slump and Late Holocene flood-induced turbidites from proglacial lake Bramant, Western French Alps. In Submarine Mass Movements and Their Consequences (Lykousis, V., Skellariou, D. & Locat, J., eds), Advances in Natural and Technological Hazards Research, 27, pp. 279–286.

Heller, P. L. & Dickinson, W. R. 1985. Submarine ramp facies model for delta-fed, sand-rich turbidite systems. American Association of Petroleum Geologists Bulletin, 69, 960–976.

Hints, O., Delabroye, A., Nõlvak, J., Servais, T., Uutela, A. & Wallin, Å. 2010. Biodiversity patterns of Ordovician marine microphytoplankton from Baltica: compari­son with other fossil groups and sea-level changes. Palaeo­geography, Palaeoclimatology, Palaeoecology, 294, 161–173.
https://doi.org/10.1016/j.palaeo.2009.11.003

Jaanusson, V. 1973. Aspects of carbonate sedimentation in the Ordovician of Baltoscandia. Lethaia, 6, 11–34.
https://doi.org/10.1111/j.1502-3931.1973.tb00871.x

Jaanusson, V. 1982. Introduction to the Ordovician of Sweden. In Field Excursion Guide. 4th International Symposium on the Ordovician System (Bruton, D. L. & Williams, S. H., eds), Paleontological Contributions from the University of Oslo, 279, 1–10.

Karis, L. & Strömberg, A. G. B. 1998. Beskrivning till berggrundskartan över Jämtlands län Del 2: Fjälldelen. Research Papers SGU Series Ca, 53, 363 pp. [in Swedish, with English summary].

Kastens, K. A. & Cita, M. B. 1981. Tsunami-induced sediment transport in the abyssal Mediterranean Sea. Geological Society of America Bulletin, 92, 845–857.
https://doi.org/10.1130/0016-7606(1981)92<845:TSTITA>2.0.CO;2

Kuenen, P. H. 1953. Graded bedding with observations on Lower Palaeozoic rocks of Britain. Verh K Nederl Akad W, Afd. Natuurkunde. Eerste Reeks, 20, 1–47.

Lashkov, E. M. & Yakovleva, V. I. 1977. Prognoz kollektorskikh neftenosnykh otlozhenij ordovika pribrezhnoj chasti akvatorii Baltijskogo morya [Prognosis of collector capabilities of the Ordovician oil-bearing beds in the coastal offshore area of the Baltic Sea]. In Litologiya i poleznye iskopaemye paleozojskikh otlozhenij Pribaltiki [Lithology and Mineral Resources of the Palaeozoic Deposits in the East Baltic] (Kuršs, V., ed.), pp. 87–96. Zinatne, Riga [in Russian].

Lindskog, A., Eriksson, M. E. & Pettersson, A. M. L. 2014. The Volkhov–Kunda transition and the base of the Holen Limestone at Kinnekulle, Västergötland, Sweden. GFF, 136, 167–171.
https://doi.org/10.1080/11035897.2014.880507

Lindström, M. & Sturkell, E. F. F. 1992. Geology of the Early Palaeozoic Lockne impact structure, Central Sweden. Tectonophysics, 216, 169–185.
https://doi.org/10.1016/0040-1951(92)90164-2

Lindström, M., Flodén, T., Grahn, Y. & Kathol, B. 1994. Post-impact deposits in Tvären, a marine Middle Ordovician crater south of Stockholm, Sweden. Geological Magazine, 131, 91–103.
https://doi.org/10.1017/S0016756800010529

Matsumoto, D., Naruse, H., Fujino, S., Surphawajruksakul, A., Jarupongsakul, T., Sakakura, N. & Murayama, M. 2008. Truncated flame structures within a deposit of the Indian Ocean Tsunami: evidence of syn-sedimentary deformation. Sedimentology, 55, 1559–1570.
https://doi.org/10.1111/j.1365-3091.2008.00957.x

Meidla, T. 1996. Late Ordovician Ostracods of Estonia. Fossilia Baltica, 2. Tartu University Press, Tartu, 222 pp.

Meidla, T., Ainsaar, L. & Hints, O. 2014. The Ordovician System in Estonia. In 4th Annual Meeting of IGCP 591, Estonia, 1019 June 2014. Abstracts and Field Guide (Bauert, H., Hints, O., Meidla, T. & Männik, P., eds), pp. 116–122. University of Tartu, Tartu.

Middleton, G. V. & Hampton, M. A. 1973. Sediment gravity flows: mechanics of flow and deposition. In Turbidites and Deep-Water Sedimentation. Short Course Notes (Middleton, G. V. & Bouma, A. H., eds), pp. 1–88. Society of Economic Paleontologists and Mineralogists Pacific Section, Los Angeles.

Moretti, M., Soria, J. M., Alfaro, P. & Walsh, N. 2001. Asym­metrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, southern Spain). Facies, 44, 283–294.
https://doi.org/10.1007/BF02668179

Mörner, N. A. 2013. Drainage varves, seismites and tsunamites in the Swedish Varve Chronology. GFF, 135, 308–315.
https://doi.org/10.1080/11035897.2013.764546

Mulder, T., Weber, O., Anschutz, P., Jorissen, F. J. & Jouanneau, J. M. 2001. A few months-old storm-generated turbidite deposited in the Capbreton Canyon (Bay of Biscay, SW France). Geo-Marine Letters, 21, 149–156.
https://doi.org/10.1007/s003670100077

Mutti, E. 1977. Distinctive thin-bedded turbidite facies and related depositional environments in the Eocene Hecho Group (South-central Pyrenees, Spain). Sedimentology, 24, 107–131.
https://doi.org/10.1111/j.1365-3091.1977.tb00122.x

Mutti, E., Tinterri, R., Remacha, E., Mavilla, N., Angella, S. & Fava, L. 1999. An Introduction to the Analysis of Ancient Turbidite Basins from an Outcrop Perspective. The American Association of Petroleum Geologists, Tulsa, Oklahoma, 61 pp.

Nakamura, Y., Nishimura, Y. & Putra, P. S. 2012. Local variation of inundation, sedimentary characteristics, and mineral assemblages of the 2011 Tohoku-oki tsunami on the Misawa coast, Aomori, Japan. Sedimentary Geology, 282, 216–227.
https://doi.org/10.1016/j.sedgeo.2012.06.003

Nikishin, A. M., Ziegler, P. A., Stephenson, R. A., Cloetingh, S. A. P. L., Furne, A. V., Fokin, P. A., Ershov, A. V., Bolotov, S. N., Korotaev, M. V., Alekseev, A. S., Gorbachev, V. I., Shipilov, E. V., Lankreijer, A., Bembinova, E. Yu. & Shalimov, I. V. 1996. Late Precambrian to Triassic history of the East European Craton: dynamics of sedi­mentary basin evolution. Tectonophysics, 31, 23–63.
https://doi.org/10.1016/S0040-1951(96)00228-4

Normark, W. R. 1970. Growth patterns of deep-sea fans. American Association of Petroleum Geologists Bulletin, 54, 2170–2195.

Norris, R. D. & Firth, J.-V. 2002. Mass wasting of Atlantic continental margins following the Chicxulub impact event. In Catastrophic Events and Mass Extinctions: Impacts and Beyond (Koeberl, C. & MacLeod, K. G., eds), Geological Society of America Special Paper, 356, 79–95.
https://doi.org/10.1130/0-8137-2356-6.79

Olabode, S. O. 2006. Siliciclastic slope deposits from the Cretaceous Abeokuta Group, Dahomey (Benin) Basin, southwestern Nigeria. Journal of African Earth Sciences, 46, 187–200.
https://doi.org/10.1016/j.jafrearsci.2006.04.008

Ormö, J. & Lindström, M. 2000. When a cosmic impact strikes the sea bed. Geological Magazine, 137, 67–80.
https://doi.org/10.1017/S0016756800003538

Ormö, J., Sturkell, E., Nõlvak, J., Melero-Asensio, I., Frisk, Å. & Wikström, T. 2014. The geology of the Målingen structure: a probable doublet to the Lockne marine-target impact crater, central Sweden. Meteoritics and Planetary Science, 49, 313–327.
https://doi.org/10.1111/maps.12251

Owen, G. 1987. Deformation process in unconsolidated sands. Geological Society of London Special Publication, 29, 11–24.
https://doi.org/10.1144/GSL.SP.1987.029.01.02

Põldsaar, K. & Ainsaar, L. 2014. Extensive soft-sediment deformation structures in the early Darriwilian (Middle Ordovician) shallow marine siliciclastic sediments formed on the Baltoscandian carbonate ramp, northwestern Estonia. Marine Geology, 356, 111–127.
https://doi.org/10.1016/j.margeo.2013.08.012

Põldsaar, K. & Ainsaar, L. 2015. Soft-sediment deformation structures in the Cambrian (Series 2) tidal deposits (NW Estonia): implications for identifying endogenic triggering mechanisms in ancient sedimentary record. Palaeoworld, 24, 16–35.
https://doi.org/10.1016/j.palwor.2014.12.003

Põldvere, A., Kleesment, A., Paalits, I., Meidla, T., Bauert, H., Stouge, S. & Valiukevičius, J. 1998. Tartu (453) drillcore. Estonian Geological Sections, 1, 1–48.

Polonia, A., Bonatti, E., Camerlenghi, A., Lucchi, R. G., Panieri, G. & Gasperini, L. 2013. Mediterranean mega­turbidite triggered by the AD 365 Crete earthquake and tsunami. Scientific Reports, 3, 1–12.
https://doi.org/10.1038/srep01285

Poprawa, P., Šliaupa, S., Stephenson, R. & Lazauskiene, J. 1999. Late Vendian–Early Palaeozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis. Tectonophysics, 314, 219–239.
https://doi.org/10.1016/S0040-1951(99)00245-0

Rasmussen, C. M. Ø., Ullmann, C. V., Jakobsen. K. G., Lindskog, A., Hansen, J., Hansen, T., Eriksson, M. E., Dronov, A., Frei, R., Korte, C., Nielsen, A. T. & Harper, D. A. T. 2016. Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Scientific Reports, 6, 18884.
https://doi.org/10.1038/srep18884

Sanders, J. E. 1965. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms. In Primary Sedimentary Structures and Their Hydrodynamic Interpretation (Middleton, G., ed.), SEPM Special Publication, 12, 192–219.
https://doi.org/10.2110/pec.65.08.0192

Schulte, P., Smit, J., Deutsch, A., Salge, T., Friese, A. & Beichel, K. 2012. Tsunami backwash deposits with Chicxulub impact ejecta and dinosaur remains from the Cretaceous–Palaeogene boundary in the La Popa Basin, Mexico. Sedimentology, 59, 737–765.
https://doi.org/10.1111/j.1365-3091.2011.01274.x

Shanmugam, C. 2008. The constructive functions of tropical cyclones and tsunamis on deep-water sand deposition during sea level highstand: implications for petroleum exploration. AAPG Bulletin, 92, 443–471.
https://doi.org/10.1306/12270707101

Shepard, F. P. 1951. Transportation of sand into deep water. Society of Economic Paleontologists and Mineralogist Special Publication, 2, 53–65.
https://doi.org/10.2110/pec.51.02.0053

Stein, S., Cloetingh, S., Sleep, N. & Wortel, R. 1989. Passive margin earthquakes, stresses, and rheology. In Earthquakes at North Atlantic Passive Margins: Neotectonics and Post-Glacial Rebound (Gregerson, S. & Basham, P., eds), pp. 231–260. Kluwer Academic Publishers, Dordrecht.
https://doi.org/10.1007/978-94-009-2311-9_14

Strasser, M., Anselmetti, F. S., Fäh, D., Giardini, D. & Schnellmann, M. 2006. Magnitudes and source areas of large prehistoric norhern Alpine earthquakes revealed by slope failures in lakes. Geology, 34, 1005–1008.
https://doi.org/10.1130/G22784A.1

Sumner, E. J., Lawrence, A. A. & Talling, P. J. 2008. Deposit structure and processes of sand deposition from a decelerating sediment suspension. Journal of Sedimentary Research, 78, 529–547.
https://doi.org/10.2110/jsr.2008.062

Suuroja, K., Kirsimäe, K., Ainsaar, L., Kohv, M., Mahaney, W. C. & Suuroja, S. 2003. The Osmussaar Breccia in northwestern Estonia – Evidence of a ~475 Ma earthquake or an impact? In Impact Markers in the Stratigraphic Record. Impact Studies (Koeberl, C. & Martínez-Ruiz, F. C., eds), pp. 333–347. Springer, Heidelberg, Berlin.
https://doi.org/10.1007/978-3-642-55463-6_14

Tamura, T., Sawai, Y., Ikehara, K., Nakashima, R., Hara, J. & Kanai, Y. 2015. Shallow-marine deposits associated with the 2011 Tohoku-oki tsunami in Sendai Bay, Japan. Journal of Quaternary Science, 30, 293–297.
https://doi.org/10.1002/jqs.2786

Thorslund, P. & Westergård, A. H. 1938. Deep boring through the Cambro-Silurian at File Haidar, Gotland. Sveriges Geologiska Undersökning Ser. C, 415, 1–57.

Tinn, O., Meidla, T., Ainsaar, L. & Kivioja, K. 2010. Rich and heterogeneous fossil ostracod fauna in the Ordovician sediment intrusions at Osmussaar Island, Estonia, reveals an ancient impact event. GFF, 132, 201–211.
https://doi.org/10.1080/11035897.2010.530351

Tuuling, I. & Vaher, R. 2018. Structure and development of the Valmiera–Lokno Uplift – a highly elevated basement block with a strongly deformed and eroded platform cover in the East European Craton interior around the Estonian–Latvian–Russian borderland. Geological Quarterly, 62, 579–596.

Ulst, R. T., Gailite, K. L. & Yakovleva, V. I. 1982. Ordovician of Latvia. Zinatne, Riga, 294 pp.

Walker, R. G. 1976. Facies models 2. Turbidities and associated coarse clastic deposits. Geoscience Canada, 3, 25–36.

Weiss, R. 2008. Sediment grains moved by passing tsunami waves: tsunami deposits in deep water. Marine Geology, 250, 251–257.
https://doi.org/10.1016/j.margeo.2008.01.018

Wentworth, C. K. 1922. A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377–392.
https://doi.org/10.1086/622910

Yakovleva, V. I. 1977. Kollektorskie svojstva i litologo-facial´nye osobennosti neftenosnykh otlozhenij ordovika Latvii [Collector capabilities and lithological facies peculiarities of oil-bearing beds in the Ordovician of Latvia]. In Litologiya i poleznye iskopaemye paleozojskikh otlozhenij Pribaltiki [Lithology and Mineral Resources of the Palaeozoic Deposits in the East Baltic] (Kuršs, V., ed.), pp. 97–111. Zinatne, Riga [in Russian].

 

Back to Issue