The carbon accumulation rate (CAR) over the last 180 years was estimated by measuring carbon concentrations in 1-cm layers in a fine-resolution dated and analysed peat sequence in Teiči Bog, Latvia, NE Europe. We used the Granger causality test to examine the temporal (lagged) relationships between the CAR and the historical climate variables. Our results showed that the average CAR was 192 g C m–2 yr–1 during the last 180 years and 169 g C m–2 yr–1 when excluding the acrotelm where decomposition and the stock of carbon are still not in the balance. The Granger causality test showed significant positive temporal associations between the temperature and the CAR, indicating that the temperature is a likely driver of the CAR in the bog. The overall pattern of the CAR resembles the changes in other peat bogs of Europe and underlines that the bogs in NE Europe most likely accumulate more C with increasing temperatures – that should be considered when addressing the issues of CAR and CO2 emissions at local and regional climate and policy initiatives.
Anderson, D. E. 2002. Carbon accumulation and C/N ratios of peat bogs in North-West Scotland. Scottish Geographical Journal, 118, 323–341.
Belyea, L. R. & Warner, B. G. 1996. Temporal scale and the accumulation of peat in a Sphagnum bog. Canadian Journal of Botany, 74, 366–377.
https://doi.org/10.1139/b96-046
Bergmanis, U. 2004. Pasākumu plāns dabiskā hidroloģiskā režīma atjaunošanai Teiču purvā [Strategy of Natural Hydrological Regime Reconstruction in Teici Bog]. Teici Nature Reserve Administration Research Department, Ļaudona, 25 pp. [in Latvian]. Available online at https: //www.daba.gov.lv/upload/File/DAPi_apstiprin/DR_Teici-06_pie-6_5.pdf [accessed 16 March 2017].
Bergmanis, U., Brehm, K. & Mathes, J. 2002. Dabiskā hidroloģiskā režīma atjaunošana augstajos un pārejas purvos [Reconstruction of natural hydrology in raised and transitional bogs]. In Aktuāli savvaļas sugu un biotopu apsaimniekošanas piemēri Latvijā [Relevant Wild Species and Biotope Management Examples from Latvia] (Opermanis, O., ed.), pp. 49–61. SIA, Ulma [in Latvian].
Blaauw, M. & Christen, J. A. 2011. Flexible paleoclimate age-depth models using an auto-regressive gamma process. Bayesian Analysis, 6, 457–474.
https://doi.org/10.1214/11-BA618
https://doi.org/10.1214/ba/1339616472
Borgmark, A. & Schoning, K. 2006. A comparative study of peat proxies from two eastern central Swedish bogs and their relation to meteorological data. Journal of Quaternary Science, 21, 109–114.
https://doi.org/10.1002/jqs.959
Broder, T., Blodau, C., Biester, H. & Knorr, K. H. 2012. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences, 9, 1479–1491.
https://doi.org/10.5194/bg-9-1479-2012
Chambers, F. M., Beilman, D. W. & Yu, Z. 2011. Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires and Peat, 7, 1–10.
Charman, D. J., Beilman, D. W., Blaauw, M., Booth, R. K., Brewer, S., Chambers, F. M., Christen, J. A., Gallego-Sala, A., Harrison, S. P., Hughes, P. D. M., Jackson, S. T., Korhola, A., Mauquoy, D., Mitchell, F. J. G., Prentice, I. C., van der Linden, M., De Vleeschouwer, F., Yu, Z. C., Alm, J., Bauer, I. E., Corish, Y. M. C., Garneau, M., Hohl, V., Huang, Y., Karofeld, E., Le Roux, G., Loisel, J., Moschen, R., Nichols, J. E., Nieminen, T. M., MacDonald, G. M., Phadtare, N. R., Rausch, N., Sillasoo, Ü., Swindles, G. T., Tuittila, E.-S., Ukonmaanaho, L., Väliranta, M., van Bellen, S., van Geel, B., Vitt, D. H. & Zhao, Y. 2013. Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences, 10, 929–944.
https://doi.org/10.5194/bg-10-929-2013
Clymo, R. S. 1983. Peat. In Mires: Swamp, Bog, Fen and Moor. Regional Studies. Ecosystems of the World 4A (Gore, A., ed.), pp. 159–224. Elsevier Scientific, Amsterdam, New York.
Clymo, R. S. 1984. The limits to peat bog growth. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 303, 605–654.
https://doi.org/10.1098/rstb.1984.0002
Davidson, J. E. H., Stephenson, D. B. & Turasie, A. A. 2016. Time series modeling of paleoclimate data. Environmetrics, 27, 55–65.
Fiałkiewicz-Kozieł, B., Smieja-Król, B., Piotrowska, N., Sikorski, J. & Gałka, M. 2014. Carbon accumulation rates in two poor fens with different water regimes: influence of anthropogenic impact and environmental change. The Holocene, 24, 1539–1549.
https://doi.org/10.1177/0959683614544062
Gałka, M., Tobolski, K., Lamentowicz, Ł., Ersek, V., Jassey, V. E. J., van der Knaap, W. O. & Lamentowicz, M. 2017. Unveilling exceptional Baltic bog ecohydrology, autogenic succession and climate change during the last 2000 years in CE Europe using replicate cores, multi-proxy data and functional traits of testate amoebae. Quaternary Science Reviews, 156, 90–106.
https://doi.org/10.1016/j.quascirev.2016.11.034
Gancone, A., Skrebele, A., Rubene, L., Ratniece, V., Cakars, I., Siņics, L., Klāvs, G., Gračkova, L., Lazdiņš, A., Butlers, A., Bārdule, A., Lupiķis, A., Bērziņa, L., Degola, L. & Priekulis, J. 2017. Latvia’s National Inventory Report. Submission under UNFCCC and the Kyoto Protocol. Common Reporting Formats (CRF), 1990–2015, 845 pp. Available online at https://www.meteo.lv/fs/ CKFinderJava/ userfiles/ files/Vide/Klimats/Zin_starpt_org/ LV_NIR_UNFCCC_13042017.pdf [accessed 16 March 2017].
Gerdol, R. & Vicentini, R. 2011. Response to heat stress of populations of two Sphagnum species from alpine bogs at different altitudes. Environmental and Experimental Botany, 74, 22–30.
https://doi.org/10.1016/j.envexpbot.2011.04.010
Granger, C. W. J. 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, 37, 424–438.
https://doi.org/10.2307/1912791
Granger, C. W. J. 1980. Testing for causality. A personal viewpoint. Journal of Economic Dynamics and Control, 2, 329–352.
Ilomets, M., Ilves, E. & Rajamäe, R. 1984. About the spatial-temporal dynamics of peat growth in Estonian bogs. Proceedings of the Academy of Sciences of the Estonian SSB, Geology, 33, 158–173 [in Russian, with English summary].
https://doi.org/10.1016/0165-1889(80)90069-X
IPCC 2014. 2013. Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Hiraishi, T., Kurg, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. & Troxler, T. G., eds). IPCC, Switzerland. Available online at http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html [accessed 16 March 2017].
Kalnina, L., Stivrins, N., Kuske, E., Ozola, I., Pujate, A., Zeimule, S., Grudzinska, I. & Ratniece, V. 2015. Peat stratigraphy and changes in peat formation during the Holocene in Latvia. Quaternary International, 383, 186–195.
https://doi.org/10.1016/j.quaint.2014.10.020
Korhola, A., Tolonen, K., Turunen, J. & Jungner, H. 1995. Estimating long-term carbon accumulation rates in boreal peatlands by radiocarbon dating. Radiocarbon, 37, 575–584.
https://doi.org/10.1017/S0033822200031064
Koster, K., Cohen, K. M., Stafleu, J. & Stouthamer, E. 2018. Using 14C-dated peat beds for reconstructing subsidence by compression in the Holland coastal plain of the Netherlands. Journal of Coastal Research, 34, 1035–1045.
https://doi.org/10.2112/JCOASTRES-D-17-00093.1
Kuhry, P. & Vitt, D. H. 1996. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology, 77, 271–275.
https://doi.org/10.2307/2265676
Lamentowicz, M., Słowińska, S., Słowiński, M., Jassey, V. E. J., Chojnicki, B. H., Reczuga, M. K., Zielińska, M., Marcisz, K., Lamentowicz, Ł., Barabach, J., Samson, M., Kołaczek, P. & Buttler, A. 2016. Combining short-term manipulative experiments with long-term palaeoecological investigations at high resolution to assess the response of Sphagnum peatlands to drought, fire and warming. Mires and Peat, 18, 1–17.
Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., Roulet, N., Rydin, H. & Schaepman-Strub, G. 2008. Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences, 5, 1475–1491.
https://doi.org/10.5194/bg-5-1475-2008
Loisel, J. & Yu, Z. 2013. Recent acceleration of carbon accumulation in a boreal peatland, south central Alaska. Journal of Geophysical Research, Biogeosciences, 118, 41–53.
https://doi.org/10.1029/2012JG001978
Loisel, J., Gallego-Sala, A. V. & Yu, Z. 2012. Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length. Biogeosciences, 9, 2737–2746.
https://doi.org/10.5194/bg-9-2737-2012
Loisel, J., Zicheng, Y., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J., Anderson, D., Andersson, S., Bochicchio, C., Barber, K., Belyea, L. R., Bunbury, J., Chambers, F. M., Charman, D. J., De Vleeschouwer, F., Fiałkiewicz-Kozieł, B., Finkelstein, S. A., Gałka, M., Garneau, M., Hammarlund, D., Hinchcliffe, W., Holmquist, J., Hughes, P., Jones, M. C., Klein, E. S., Kokfelt, U., Kohola, A., Kuhry, P., Lamarre, A., Lamentowicz, M., Large, D., Lavoie, M., MacDonald, G., Magnan, G., Mäkilä, M., Mallon, G., Mathijssen, P., Mauquoy, D., McCarroll, J., Moore, T. R., Nichols, J., O’Reilly, B., Oksanen, P., Packalen, M., Peteet, D., Richard, P. J. H., Robinson, S., Ronkainen, T., Rundgren, M., Sannel, A. B. K., Tarnocai, C., Thom, T., Tuittila, E.-S., Turetsky, M., Väliranta, M., van der Linden, M., van Geel, B., van Bellen, S., Vitt, D., Zhao, Y. & Zhou, W. 2014. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene, 24, 1028–1042.
https://doi.org/10.1177/0959683614538073
Mathijssen, P., Tuovinen, J.-P., Lohila, A., Aurela, M., Juutinen, S., Laurila, T., Niemelä, E., Tuittila, E.-S. & Väliranta, M. 2014. Development, carbon accumulation, and radiative forcing of a subarctic fen over the Holocene. The Holocene, 24, 1156–1166.
https://doi.org/10.1177/0959683614538072
Mathijssen, P. J. H., Väliranta, M., Korrensalo, A., Alekseychik, P., Vesala, T., Rinne, J. & Tuittila, E.-S. 2016. Reconstruction of Holocene carbon dynamics in a large boreal peatland complex, southern Finland. Quaternary Science Reviews, 142, 1–15.
https://doi.org/10.1016/j.quascirev.2016.04.013
Meyers, P. A. & Teranes, J. L. 2001. Sediment organic matter. In Tracking Environmental Change Using Lake Sediments, Vol. 2: Physical and Geochemical Methods (Last, W. M. & Smol. J. P., eds), pp. 241–269. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Milecka, K., Kowalewski, G., Fiałkiewicz-Kozieł, B., Gałka, M., Lamentowicz, M., Chojnicki, B. H., Goslar, T. & Barabach, J. 2017. Hydrological changes in the Rzecin peatland (Puszcza Notecka, Poland) induced by anthropogenic factors: implications for mire development and carbon sequestration. The Holocene, 27, 651–664.
https://doi.org/10.1177/0959683616670468
Namatēva, A. 2012. Mikroainavu telpiskā struktūra un to ietekmējošie faktori Austrumlatvijas zemienes augstajos purvos [Spatial Structure of Raised Bog Microlandscapes and their Influencing Factors in Eastern Latvia]. Doctoral dissertation, University of Latvia, Riga, 154 pp. [in Latvian]. Available online at https//dspace.lu.lv/dspace/ handle/7/5167 [accessed 17 March 2017].
Peters, G. P., Andrew, R. M., Canadell, J. G., Fuss, S., Jackson, R. B., Korsbakken, J. I., Le Quéré, C. & Nakicenovic, N. 2017. Key indicators to track current progress and future ambition of the Paris Agreement. Nature Climate Change, 7, 118–123.
https://doi.org/10.1038/nclimate3202
Philben, M., Kaiser, K. & Benner, R. 2014. Does oxygen exposure time control the extent of organic matter decomposition in peatlands? Journal of Geophysical Research, Biogeosciences, 119, 897–909.
https://doi.org/10.1002/2013JG002573
R Core Team. 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Available online at http://www.R-project.org/ [accessed 17 March 2017].
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A. & Wattenbach, M. 2013. Climate extremes and the carbon cycle. Nature, 500, 287–295.
https://doi.org/10.1038/nature12350
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M. & van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon, 55, 1869–1887.
https://doi.org/10.2458/azu_js_rc.55.16947
Rogelj, J., den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K. & Meinshausen, M. 2016. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 534, 631–639.
https://doi.org/10.1038/nature18307
Speranza, A., Hanke, J., van Geel, B. & Fanta, J. 2000. Late-Holocene human impact and peat development in the Černà Hora bog, Krkonoše Mountains, Czech Republic. The Holocene, 10, 575–585.
https://doi.org/10.1191/095968300668946885
Stern, D. I. & Kaufmann, R. K. 2014. Anthropogenic and natural causes of climate change. Climatic Change, 122, 257–269.
https://doi.org/10.1007/s10584-013-1007-x
Stivrins, N., Wulf, S., Wastegård, S., Lind, E. M., Alliksaar, T., Gałka, M., Andersen, T. J., Heinsalu, A., Seppä, H. & Veski, S. 2016. Detection of the Askja AD 1875 cryptotephra in Latvia, Eastern Europe. Journal of Quaternary Science, 31, 437–441.
https://doi.org/10.1002/jqs.2868
Stivrins, N., Ozola, I., Gałka, M., Kuske, E., Alliksaar, T., Andersen, T. J., Lamentowicz, M., Wulf, S. & Reitalu, T. 2017. Drivers of peat accumulation rate in a raised bog: impact of drainage, climate, and local vegetation composition. Mires and Peat, 19, 1–19.
Swindles, G. T., Morris, P. J., Mullan, D., Watson, E. J., Turner, T. E., Roland, T. P., Amesbury, M. J., Kokfelt, U., Schoning, K., Pratte, S., Gallego-Sala, A., Charman, D. J., Sanderson, N., Garneau, M., Carrivick, J. L., Woulds, C., Holden, J., Parry, L. & Galloway, J. M. 2015. The long-term fate of permafrost peatlands under rapid climate warming. Scientific Reports, 5, No. 17951.
Tahvonen, O. 1994. Net national emission, CO2 taxation and the role of forestry. Finnish Forest Research Institute, Research Papers, 490, 1–16.
Tanneberger, F., Tegetmeyer, C., Busse, S., Barthelmes, A., Shumka, S., Moles Mariné, A., Jenderedjian, K., Steiner, G. M., Essl, F., Etzold, J., Mendes, C, Kozulin, A., Frankard, P., Milanović, Đ., Geneva, A., Apostolova, I., Alegro, A., Delipetrou, P., Navrátilová, J., Risager, M., Leivits, A., Fosaa, A. M., Tuominen, S., Muller, F., Bakuradze, T., Sommer, M., Christanis, K., Szurdoki, E., Oskarsson, H., Brink, S. H., Connolly, J., Bragazza, L., Marinelli, G., Aleksāns, O., Priede, A., Sungaila, D., Melovski, L., Belous, T., Saveljić, D., de Vries, F., Moen, A., Dembek, W., Mateus, J., Hanganu, J., Sirin, A., Markina, A., Napreenko, M., Lazerević, P., Šefferová Stanová, V., Skoberne, P., Heras Pérez, P., Pontevedra-Pombal, X., Lonnstad, J., Küchler, M., Wüst-Galley, C., Kirca, S., Mykytiuk, O., Lindsay, R. & Joosten, H. 2017. The peatland map of Europe. Mires and Peat, 19, 1–17.
Väliranta, M., Salojärvi, N., Vuprsalo, A., Juutinen, S., Korhola, A., Luoto, M. & Tuittila, E.-S. 2017. Holocene fen–bog transitions, current status in Finland and future perspectives. The Holocene, 5, 752–764.
https://doi.org/10.1177/0959683616670471
Van der Linden, M. & van Geel, B. 2006. Late Holocene climate change and human impact recorded in a south Swedish ombrotrophic peat bog. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 649–667.
https://doi.org/10.1016/j.palaeo.2006.03.039
Van der Linden, M., Heijmans, M. M. P. D. & van Geel, B. 2014. Carbon accumulation in peat deposits from northern Sweden to northern Germany during the last millennium. The Holocene, 24, 1117–1125.
https://doi.org/10.1177/0959683614538071
Vardy, S. R., Warner, B. G., Turunen, J. & Aravena, R. 2000. Carbon accumulation in permafrost peatlands in the Northwest Territories and Nunavut, Canada. The Holocene, 10, 273–280.
https://doi.org/10.1191/095968300671749538
Victor, D. G. & Leape, J. P. 2015. After the talks. Nature, 527, 439–441.
https://doi.org/10.1038/527439a
Wardenaar, E. P. C. 1987. A new hand tool for cutting peat profiles. Canadian Journal of Botany, 65, 1772–1773.
https://doi.org/10.1139/b87-243
Willis, K. S., Beilman, D., Booth, R. K., Amesbury, M., Homquist, J. & MacDonald, G. 2015. Peatland paleohydrology in southern West Siberian Lowlands: comparison of multiple testate amoeba transfer functions, sites, and Sphagnum δ13C values. The Holocene, 25, 1425–1436.
https://doi.org/10.1177/0959683615585833
Yu, Z. 2012. Northern peatland carbon stocks and dynamics: a review. Biogeosciences, 9, 4071–4085.
https://doi.org/10.5194/bg-9-4071-2012
Yu, Z., Beilman, D. W. & Jones, M. C. 2009. Sensitivity of northern peatland carbon dynamics to Holocene climate change. In Carbon Cycling in Northern Peatlands (Baird, A. J., Belyea, L. R., Comas, X., Reeve, A. S. & Slater, L. D., eds), Geophysical Monograph Series, 184, 55–69.
Yu, Z., Vitt, D. H., Campbell, I. D. & Apps, M. J. 2003. Understanding Holocene peat accumulation pattern of continental fens in western Canada. Canadian Journal of Botany, 81, 267–282.https://doi.org/10.1139/b03-016