ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Intra-annual distribution of Temora longicornis biomass in the Gulf of Gdańsk (the southern Baltic Sea) – numerical simulations; pp. 256–273
PDF | https://doi.org/10.3176/earth.2017.21

Authors
Evelina Grinienė, Lidia Dzierzbicka-Głowacka, Anna Lemieszek, Artur Nowicki, Jacek Piskozub, Marcin Kalarus, Maja Musialik-Koszarowska, Stella Mudrak-Cegiołka, Maria Iwona Żmijewska
Abstract

A population model of the copepod Temora longicornis coupled with the ecosystem model 3D CEMBS (Coupled Ecosystem Model of the Baltic Sea) was used to determine the intra-annual distribution of the species biomass in the Gdańsk Basin (the southern Baltic Sea). The population model for T. longicornis consists of twelve equations for twelve state variables, six for mass and six for abundance, i.e. two state variables for each of the six model stages of the development: eggs (Egg), non-feeding stage (N1), subsequent nauplii stages (N2–N6), two copepodite stages (C1–C3 and C4–C5) and adults (C6). The empirical validation of the population model was based on in situ data collected in 2010 and 2011 in the Gdańsk Deep and the western part of the Gulf of Gdańsk. The highest values of the model biomass occurred in the period of high water temperatures – in June 2010 and July 2011 in the Gulf of Gdańsk (ca 5200 mg wet weight (w.w.) m–2 and 6300 mg w.w. m–2), and for almost the whole summer in the Gdańsk Deep (24 500 mg w.w. m–2 and 27 800 mg w.w. m–2). Temora longicornis produced 4 to 5 generations per year in the Gulf of Gdańsk and Gdańsk Deep, respectively. The population model was satisfactorily verified and the calculated results were consistent with the in situ data. Despite some differences between the field and model data, the developed population model of T. longicornis is the first model for this species in the Baltic Sea and, even though it needs further improvement, it can be a useful tool for determining the population dynamics of the species and ecological relationships in the environment.

References

Ackefors, H. 1972. The amount of zooplankton expressed as numbers, wet weight and carbon content in the Askö area (the northern Baltic Proper). Meddelande fran Havsfiske­laboratoriet, Lysekil, 129, 1–10.

Aksnes, D. L. & Ohman, M. D. 1996. A vertical life table approach to zooplankton mortality estimation. Limnol­ogy and Oceanography, 41, 1461–1469.

Arendt, K. E., Jónasdóttir, S. H., Hansen, P. J. & Gärtner, S. 2006. Effects of dietary fatty acids on the reproductive success of the calanoid copepod Temora longicornis. Marine Biology, 146, 513–530.
https://doi.org/10.1007/s00227-004-1457-9

Arrhenius, F. 1996. Diet composition and food selectivity of 0-group herring (Clupea harengus L.) and sprat (Sprattus sprattus L.) in the northern Baltic Sea. ICES Journal of Marine Science, 53, 701–712.
https://doi.org/10.1006/jmsc.1996.0089

Atkinson, A. 1995. Omnivory and feeding selectivity in five copepod species during spring in the Bellingshausen Sea, Antarctica. ICES Journal of Marine Science, 52, 385–396.
https://doi.org/10.1016/1054-3139(95)80054-9

Belehradek, J. 1957. Physiological aspects of heat and cold. Annual Review of Physiology, 19, 59–82.
https://doi.org/10.1146/annurev.ph.19.030157.000423

Berggreen, U., Hansen, B. & Kiørboe, T. 1988. Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determina­tion of copepod production. Marine Biology, 99, 341–352.
https://doi.org/10.1007/BF02112126

Carlotti, F. & Sciandra, A. 1989. Population dynamics model of Euterpina acutifrons (Copepoda: Harpacticoida) coupling individual growth and larval development. Marine Ecology Progress Series, 56, 225–242.
https://doi.org/10.3354/meps056225

Carlotti, F. & Wolf, K. U. 1998. A Lagrangian ensemble model of Calanus finmarchicus coupled with a 1-D ecosystem model. Fisheries Oceanography, 7, 192–204.
https://doi.org/10.1046/j.1365-2419.1998.00085.x

Chojnacki, J., Drzycimski, I. & Siudziński, K. 1984. The eco­logical characteristics of the main species of crustacean in plankton of the southern Baltic. In Articles on Biological Productivity of the Baltic Sea, Vol. 2, pp. 148–171. Moscow [in Russian].

Cushing, D. H. 1995, The long-term relationship between zooplankton and fish. ICES Journal of Marine Science, 52, 611–626.
https://doi.org/10.1016/1054-3139(95)80076-X

Dickmann, M., Möllmann, C. & Voss, R. 2007. Feeding ecology of Central Baltic sprat (Sprattus sprattus L.) larvae in relation to zooplankton dynamics – implica­tions for survival. Marine Ecology Progress Series, 342, 277–289.
https://doi.org/10.3354/meps342277

Dippner, J. W., Kornilovs, G. & Sidrevics, L. 2000. Long-term variability of mesozooplankton in the Central Baltic Sea. Journal of Marine Systems, 25, 23–31.
https://doi.org/10.1016/S0924-7963(00)00006-3

Dutz, J., Mohrholz, V. & van Beusekom, J. E. E. 2010. Life cycle and spring phenology of Temora longicornis in the Baltic Sea. Marine Ecology Progress Series, 406, 223–238.
https://doi.org/10.3354/meps08545

Dutz, J., van Beusekom, J. E. E. & Hinrishs, R. 2012. Seasonal dynamics of fecundity and recruitment of Temora longicornis in the Baltic Sea. Marine Ecology Progress Series, 462, 51–66.
https://doi.org/10.3354/meps09830

Dzierzbicka-Głowacka, L., Zmijewska, M. I., Mudrak, S., Jakacki, J. & Lemieszek, A. 2010. Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea. Biogeosciences, 7, 2247–2259.
https://doi.org/10.5194/bg-7-2247-2010

Dzierzbicka-Głowacka, L., Lemieszek, A. & Żmijewska, M. I. 2011. Development and growth of Temora longicornis: numerical simulations using laboratory culture data. Oceanologia, 53, 137–161.
https://doi.org/10.5697/oc.53-1.137

Dzierzbicka-Głowacka, L., Piskozub, J., Jakacki, J., Mud­rak, S. & Żmijewska, M. I. 2012. Spatiotemporal dis­tribu­tion of copepod populations in the Gulf of Gdańsk (the southern Baltic Sea). Journal of Oceanography, 68, 887–904.
https://doi.org/10.1007/s10872-012-0142-8

Dzierzbicka-Głowacka, L., Janecki, M., Nowicki, A. & Jakacki, J. 2013a. Activation of the operational eco­hydrodynamic model (3D CEMBS) – the ecosystem module. Oceanologia, 55, 543–572.
https://doi.org/10.5697/oc.55-3.543

Dzierzbicka-Głowacka, L., Lemieszek, A., Musialik, M. & Zmijewska, M. I. 2013b. Modelling of egg production of Temora longicornis from the southern Baltic Sea includ­ing salinity. Oceanological and Hydrobiological Studies, 42, 277–288.
https://doi.org/10.2478/s13545-013-0084-9

Fonselius, S. & Valderrama, J. 2003. One hundred years of hydrographic measurements in the Baltic Sea. Journal of Sea Research, 49, 229–241.
https://doi.org/10.1016/S1385-1101(03)00035-2

Halsband, C. & Hirche, H. J. 2001. Reproductive cycles of dominant calanoid copepods in the North Sea. Marine Ecology Progress Series, 209, 219–229.
https://doi.org/10.3354/meps209219

Hänninen, J., Vuorinen, I. & Hjelt, P. 2000. Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnology and Oceano­graphy, 45, 703–710.

Hänninen, J., Vuorinen, I. & Kornilovs, G. 2003. Atlantic climatic factors control decadal dynamics of a Baltic Sea copepod Temora longicornis. Ecography, 26, 672–678.
https://doi.org/10.1034/j.1600-0587.2003.03524.x

Harris, R. P. & Paffenhöfer, G. A. 1976. The effect of food concentration on cumulative ingestion and growth efficiency of two small marine planktonic copepods. Journal of the Marine Biological Association of the United Kingdom, 56, 875–888.
https://doi.org/10.1017/S0025315400020920

[HELCOM] Helsinki Commission. 2017. Manual for Marine Monitoring in the COMBINE Programme of HELCOM. HELCOM, 361 pp.

Hernroth, L. 1985. Recommendations on methods for marine biological studies in the Baltic Sea. Mesozooplankton biomass assessment. The Baltic Marine Biologists, 10, 1–32.

Holste, L., St John, M. A. & Peck, M. A. 2009. The effects of temperature and salinity on reproductive success of Temora longicornis in the Baltic Sea: a copepod coping with a tough situation. Marine Biology, 156, 527–540.
https://doi.org/10.1007/s00227-008-1101-1

Houde, S. E. L. & Roman, M. R. 1987. Effects of food quality on the functional ingestion response of the copepod Acartia tonsa. Marine Ecology Progress Series, 40, 69–77.
https://doi.org/10.3354/meps040069

Huntley, M. E., Sykes, P., Rohan, S. & Marin, V. 1986. Chemically-mediated rejection of dinoflagellate prey by the copepods Calanus pacyficus and Paracalanus parvus: mechanism, occurrence and significance. Marine Ecology Progress Series, 28, 105–120.
https://doi.org/10.3354/meps028105

Kiørboe, T. 2006. Sex, sex-ratios, and the dynamics of pelagic copepod populations. Oecologia, 148, 40–50.
https://doi.org/10.1007/s00442-005-0346-3
https://doi.org/10.1007/s00442-006-0415-2

Klein Breteler, W. C. M. & Gonzalez, S. R. 1986. Culture and development of Temora longicornis (Copepoda, Calanoida) cultured at different temperature and food conditions. Marine Ecology Progress Series, 119, 99–110.
https://doi.org/10.3354/meps119099

Launiainen, J. & Vihma, T. 1990. Meteorological, ice and water exchange conditions. Second periodic assessment of the state of the marine environment of the Baltic Sea, 1984–1988. Baltic Sea Environment Proceedings, 35B, 22–33.

Leppäranta, M. & Myrberg, K. 2009. Physical Oceanography of the Baltic Sea. Springer, Heidelberg, Germany, 401 pp.
https://doi.org/10.1007/978-3-540-79703-6

Line, R. J. 1979. Some observations on the fecundity and development cycles of the main zooplankton species in the Baltic Sea and the Gulf of Riga. In Rybo­khozyajstvennye issledovaniya v bassejne Baltijskogo morya [Fisheries Investigations in the Basin of the Baltic Sea], Vol. 14, pp. 3–10. Zvaigzne, Riga [in Russian].

Line, R. J. 1984. On the reproduction and mortality of zooplankton (Copepoda) in the south-eastern, eastern and north-eastern Baltic. In Ocherki po biologicheskoj produktivnosti Baltijskogo morya [Biological Pro­ductivity of the Baltic Sea], Vol. 2, pp. 265–274. Moscow [in Russian].

Malmberg, S. A. & Svanson, A. 1982. Variations in the physical marine environment in relation to climate. International Council for the Exploration of the Sea ICES C.M, 1982/Gen: 4. Mini Symposium, 31 pp.

Matthäus, W. & Franck, H. 1992. Characteristics of major Baltic inflows – a statistical analysis. Continental Shelf Research, 12, 1375–1400.
https://doi.org/10.1016/0278-4343(92)90060-W

Matthäus, W. & Schinke, H. 1994. Mean atmospheric circula­tion patterns associated with major Baltic inflows. Deutsche Hydrographische Zeitschrift, 46, 321–339.
https://doi.org/10.1007/BF02226309

McLaren, I. A. & Leonard, A. 1995. Assessing the equivalence of growth and egg production of copepods. ICES Journal of Marine Science, 52, 397–408.
https://doi.org/10.1016/1054-3139(95)80055-7

Moll, A. & Stegert, C. 2007. Modelling Pseudocalanus elongatus stage-structured population dynamics embedded in a water column ecosystem model for the northern North Sea. Journal Marine Systems, 64, 35–46.
https://doi.org/10.1016/j.jmarsys.2006.03.015

Möllmann, C. & Köster, F. W. 2002. Population dynamics of calanoid copepods and the implications of their predation by clupeid fish in the Central Baltic Sea. Journal of Plankton Research, 24, 959–977.
https://doi.org/10.1093/plankt/24.10.959

Möllmann, C., Kornilovs, G. & Sidrevics, L. 2000. Long-term dynamics of main mesozooplankton species in the central Baltic Sea. Journal of Plankton Research, 22, 2015–2038.
https://doi.org/10.1093/plankt/22.11.2015

Mudrak, S. 2004. Short- and Long-Term Variability of Zoo­plankton in Coastal Baltic Waters: Using the Gulf of Gdansk as an Example. PhD Thesis, University of Gdansk, Gdynia, Poland, 328 pp. [in Polish].

Ojaveer, E, Lumberg, A. & Ojaveer, H. 1998. Highlights of zooplankton dynamics in Estonian waters (Baltic Sea). ICES Journal of Marine Science, 55, 644–654.
https://doi.org/10.1006/jmsc.1998.0393

Otto, S. A., Kornilovs, G., Llope, M. & Möllmann, Ch. 2014. Interactions among density, climate, and food web effects determine long-term life cycle dynamics of a key copepod. Marine Ecology Progress Series, 498, 73–84.
https://doi.org/10.3354/meps10613

Paffenhöfer, G. A. 1971. Grazing and ingestion rates of nauplii, copepodids and adults of the marine planktonic copepod Calanus helgolandicus. Marine Biology, 11, 286–298.
https://doi.org/10.1007/BF00401275

Peters, J. 2006. Lipids in Key Copepod Species of the Baltic Sea and North Sea – Implications for Life Cycles, Trophodynamics and Food Quality. PhD thesis, University Breme, 159 pp.

Sekiguchi, H., McLaren, I. A. & Corkett, C. J. 1980. Relationship between growth rate and egg production in the copepod Acartia clausi Hudsonic. Marine Biology, 58, 133–138.
https://doi.org/10.1007/BF00396124

Stegert, Ch., Kreus, M., Carlotii, F. & Moll, A. 2007. Para­meterisation of a zooplankton population model for Pseudocalanus elongatus using stage durations from laboratory experiments. Ecological Modelling, 206, 213–230.
https://doi.org/10.1016/j.ecolmodel.2007.04.012

Steele, J. H. & Mullin, M. M. 1977. Zooplankton dynamics. In The Sea, Vol. 6 (Goldberg, E. D., McCave, I. N., O’Brien, J. J. & Steele, J. H., eds), pp. 857–887. Interscience Publication, New York–London–Sydney–Toronto.

Vinogradov, M. E. & Shushkina, E. A. 1987. Funktsioniro­vanie planktonnykh soobshestv epipelagiali okeana [Functioning of Pelagic Plankton Communities in the Ocean]. Nauka, Moskva, 240 pp. [in Russian].

Vuorinen, I., Hänninen, J., Viitasalo, M., Helminen, U. & Kuosa, H. 1998. Proportion of copepod biomass declines with decreasing salinity in the Baltic Sea. ICES Journal of Marine Science, 55, 767–774.
https://doi.org/10.1006/jmsc.1998.0398

Back to Issue