The Geological Base Map (GBM), presenting an elongated buried valley running beneath the Varudi bog, triggered the geophysical studies near Viru-Nigula borough in northeastern Estonia. After the Geological Survey of Estonia had compiled the GBM map set, the course and extent of the valley still remained indistinct. Principally the morphology of the Varudi valley had been determined just by one borehole characterizing the 30 m thick Quaternary succession within the valley. The thickness of Quaternary sediments is, however, just a few metres in adjacent boreholes. We used ground-penetrating radar and electrical resistivity tomography (ERT) for acquiring extra knowledge about the extent and morphology of the Varudi structure. Ground-penetrating radar enabled us to specify the thickness and composition of Quaternary deposits, and to recognize dislocations of the bedrock blocks. As the radar images provided information on the topmost ~4 m only, ERT (Wenner and Wenner–Schlumberger arrays) was applied to define deeper, down to 40 m, electrical resistivity anomalies. The ERT studies revealed two fracture zones where regular Ordovician carbonate beds have been crushed and replaced by Quaternary sediments. The Varudi valley coincides with the southern zone. Both fracture zones probably acted as groundwater flow channels and sediment pathways in the Late Pleistocene, and hence supported the creation of the Varudi bog.
Bedrosian, P. A., Burton, B. L., Powers, M. H., Minsley, B. J., Phillips, J. D. & Hunter, L. E. 2012. Geophysical investigations of geology and structure at the Martis Creek Dam, Truckee, California. Journal of Applied Geophysics, 77, 7–20.
https://doi.org/10.1016/j.jappgeo.2011.11.002
Benn, D. I. & Evans, D. J. A. 2010. Glaciers and Glaciation. Second edition, Hodder Education, 802 pp.
Caputo, R., Piscitelli, S., Oliveto, A., Rizzo, E. & Lapenna, V. 2003. The use of electrical resistivity tomographies in active tectonics: examples from the Tyrnavos Basin, Greece. Journal of Geodynamics, 36, 19–35.
https://doi.org/10.1016/S0264-3707(03)00036-X
Chambers, J. E., Wilkinson, P. B., Wardrop, D., Hameed, A., Hill, I., Jeffrey, C., Loke, M. H., Meldrum, P. I., Kuras, O., Cave, M. & Gunn, D. A. 2012. Bedrock detection beneath river terrace deposits using three-dimensional electrical resistivity tomography. Geomorphology, 177–178, 17–25.
https://doi.org/10.1016/j.geomorph.2012.03.034
Colella, A., Lapenna, V. & Rizzo, E. 2004. High-resolution imaging of the High Agri Valley Basin (Southern Italy) with electrical resistivity tomography. Tectonophysics, 386, 29–40.
https://doi.org/10.1016/j.tecto.2004.03.017
Dagallier, G., Laitinen, A. I., Malartre, F., Van Campenhout, I. P. A. M. & Veeken, P. C. H. 2000. Ground penetrating radar application in a shallow marine Oxfordian limestone sequence located on the eastern flank of the Paris Basin, NE France. Sedimentary Geology, 130, 149–165.
https://doi.org/10.1016/S0037-0738(99)00105-0
Davis, J. L. & Annan, A. P. 1989. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophysical Prospecting, 37, 531–551.
https://doi.org/10.1111/j.1365-2478.1989.tb02221.x
Doolittle, J. A. & Butnor, J. R. 2009. Soils, peatlands, and biomonitoring. In Ground Penetrating Radar: Theory and Applications (Jol, H. M., ed.), pp. 179–202. Elsevier.
https://doi.org/10.1016/B978-0-444-53348-7.00006-5
Drahor, M. G. & Berge, M. A. 2017. Integrated geophysical investigations in a fault zone located on southwestern part of İzmir city, Western Anatolia, Turkey. Journal of Applied Geophysics, 136, 114–133.
https://doi.org/10.1016/j.jappgeo.2016.10.021
Ghisetti, F., Sibson, R. H. & Hamling, I. 2016. Deformed Neogene basins, active faulting and topography in Westland: distributed crustal mobility west of the Alpine Fault transpressive plate boundary (South Island, New Zealand). Tectonophysics, 693, 340–362.
https://doi.org/10.1016/j.tecto.2016.03.024
Giocoli, A., Magrì, C., Vannoli, P., Piscitelli, S., Rizzo, E., Siniscalchi, A., Burrato, P., Basso, C. & Nocera, S. D. 2008. Electrical resistivity tomography investigations in the Ufita Valley (Southern Italy). Annals of Geophysics, 51, 213–223.
Habicht, H.-L., Rosentau, A., Jõeleht, A., Heinsalu, A., Kriiska, A., Kohv, M., Hang, T. & Aunap, R. 2017. GIS-based multiproxy coastline reconstruction of the eastern Gulf of Riga, Baltic Sea, during the Stone Age. Boreas, 46, 83−99.
https://doi.org/10.1111/bor.12157
Hetzel, R. 2013. Active faulting, mountain growth, and erosion at the margins of the Tibetan Plateau constrained by in situ-produced cosmogenic nuclides. Tectonophysics, 582, 1–24.
https://doi.org/10.1016/j.tecto.2012.10.027
Jõeleht, A. & Kukkonen, I. T. 2002. Physical properties of Vendian to Devonian sedimentary rocks in Estonia. GFF, 124, 65–72.
https://doi.org/10.1080/11035890201242065
Jõeleht, A. & Plado, J. 2010. Architecture of the northeastern rim of the Kärdla impact crater, Estonia, based on ground-penetrating radar studies. In Large Meteorite Impacts and Planetary Evolution IV (Gibson, R. & Reimold, W. U., eds), pp. 133–140. Geological Society of America., Boulder, Colorado.
https://doi.org/10.1130/2010.2465(09)
Kalm, V. & Gorlach, A. 2014. Impact of bedrock surface topography on spatial distribution of Quaternary sediments and on the flow pattern of late Weichselian glaciers on the East European Craton (Russian Plain). Geomorphology, 207, 1–9.
https://doi.org/10.1016/j.geomorph.2013.10.022
Kirs, J., Puura, V., Soesoo, A., Klein, V., Konsa, M., Koppelmaa, H., Niin, M. & Urtson, K. 2009. The crystalline basement of Estonia: rock complexes of the Palaeoproterozoic Orosirian and Statherian and Mesoproterozoic Calymmian periods, and regional correlations. Estonian Journal of Earth Sciences, 58, 219–228.
https://doi.org/10.3176/earth.2009.4.01
Loke, M. H. & Barker, R. D. 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting, 44, 131–152.
https://doi.org/10.1111/j.1365-2478.1996.tb00142.x
Miidel, A. & Raukas, A. 1991. The evolution of the river systems in the East Baltic. In Temperate Palaeohydrology (Starkel, I., Gregory, K. J. & Thornes, J. B., eds), pp 365–380. John Wiley & Sons, Chichester.
Miidel, A., Raukas, A., Tavast, E. & Vaher, R. 2006. Influence of bedrock topography on oil shale mining in North-East Estonia. Oil Shale, 23, 313−327.
Mustasaar, M., Plado, J. & Jõeleht, A. 2012. Determination of electromagnetic wave velocity in horizontally layered sedimentary target: a ground-penetrating radar study from Silurian limestones, Estonia. Acta Geophysica, 60, 357–370.
https://doi.org/10.2478/s11600-011-0068-3
Neal, A. 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-Science Reviews, 66, 261–330.
https://doi.org/10.1016/j.earscirev.2004.01.004
Plado, J., Sibul, I., Mustasaar, M. & Jõeleht, A. 2011. Ground-penetrating radar study of the Rahivere peat bog, eastern Estonia. Estonian Journal of Earth Sciences, 60, 31–42.
https://doi.org/10.3176/earth.2011.1.03
Plado, J., Preeden, U., Jõeleht, A., Pesonen, L. J. & Mertanen, S. 2016. Palaeomagnetism of Middle Ordovician carbonate sequence, Vaivara Sinimäed area, northeast Estonia, Baltica. Acta Geophysica, 64, 1391–1411.
https://doi.org/10.1515/acgeo-2016-0066
Puura, V. & Vaher, R. 1997. Tectonics. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 163–180. Estonian Academy Publishers, Tallinn.
Rattas, M. 2007. Spatial distribution and morphological aspects of eskers and bedrock valleys in North Estonia: implications for the reconstruction of subglacial drainage system under the Late-Weichselian Baltic Ice Stream. Geological Survey of Finland, Special Paper, 46, 63–68.
Rattas, M. & Kalm, V. 2004. Glaciotectonic deformation patterns in Estonia. Geological Quarterly, 48, 15–22.
Raukas, A. 1997. Location and topography. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 9–14. Estonian Academy Publishers, Tallinn.
Raukas, A. & Kajak, K. 1995. Quaternary stratigraphy in Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 44, 149–162.
Raukas, A. & Kajak, K. 1997. Quaternary cover. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 125–136. Estonian Academy Publishers, Tallinn.
Rosentau, A., Joeleht, A., Plado, J., Aunap, R., Muru, M. & Eskola, K. O. 2012. Development of the Holocene foredune plain in the Narva-Joesuu area, eastern Gulf of Finland. Geological Quarterly, 56, 89–100.
https://doi.org/10.7306/gq.1077
Sandersen, P. & Jørgensen, F. 2003. Buried Quaternary valleys in western Denmark − occurrence and inferred implications for groundwater resources and vulnerability. Journal of Applied Geophysics, 53, 229–248.
https://doi.org/10.1016/j.jappgeo.2003.08.006
Sildvee, H. & Vaher, R. 1995. Geologic structure and seismicity of Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 44, 15–25.
Suuroja, K.-M., Ploom, K., Mardim, T., All, T., Otsmaa, M., & Veski, A. 2006. The Explanatory Note to the Geological Maps of Rakvere (6434) Sheet. Geological Survey of Estonia, Tallinn.
Tavast, E. 1995. About difficulties in the geophysical investigation of buried valleys in Livonia. In Geology of Livonia (Meidla, T., Jõeleht, A., Kalm, V. & Kirs, J., eds), pp. 114–118. University of Tartu, Estonian Geological Society, Tartu.
Tavast, E. 1997. Bedrock topography. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 252–256. Estonian Academy Publishers, Tallinn.
Vaher, R., Miidel, A. & Raukas, A. 2013. Structure and origin of the Vaivara Sinimäed hill range, Northeast Estonia. Estonian Journal of Earth Sciences, 62, 160–170.
https://doi.org/10.3176/earth.2013.13