ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Barite mineralization in Kalana speleothems, Central Estonia: Sr, S and O isotope characterization; pp. 130–141
PDF | 10.3176/earth.2017.10

Authors
Mikk Gaškov, Holar Sepp, Päärn Paiste, Kalle Kirsimäe, Tõnu Pani
Abstract

Barite mineralization in association with calcitic speleothem precipitates in cave structures in Silurian Aeronian carbonate rocks in Kalana quarry, Central Estonia, was studied. Barite mineralization in Kalana occurs in two generations – euhedral bladed-tabular barite zonal crystals from a few to 10 cm in size, growing on the limestone-dolomite wall-rock (generation I), and sparsely placed thin tabular crystals a few millimetres thick and up to 1 cm in size, growing on calcitic crusts (generation II). The barite crystals of generation I are frequently found embedded by paragenetically later calcitic botryoidal crusts. The Sr and S isotopic composition of barite crystals shows a trend of increasing Sr isotope ratios (from 0.7114 to 0.7120) and δ34S values (from 13‰ to 33‰) from the central parts towards the edges of zonal crystals. This suggests barite precipitation by mixing of two endmember fluids at varying ratios during barite formation: warm (up to 70 °C) reducing fluid bearing Ba, characterized by an elevated radiogenic Sr- and 34S-enriched isotopic signal, and a cooler ambient fluid bearing an isotopically lighter dissolved sulphate, characterized by lower Sr isotope ratios. The excess of radiogenic 87Sr in barite compared to Phanerozoic seawater values suggests Sr derived from a continental source, whereas sulphate was derived either from oxidized H2S or a modified seawater source. Gradual increase in δ34S values towards the outer zones could also indicate the 34S enrichment due to bacterial sulphate reduction, even though there is no paired 34S and 18O enrichment of sulphate, characteristic of bacterial reworking. This can be interpreted as indicating an open system with limited sulphate resupply where the δ18O composition of sulphate was equilibrated with warm ascending hydrothermal fluid.

References

Aharon, P. & Fu, B. S. 2000. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico. Geochimica et Cosmochimica Acta, 64, 233–246.

https://doi.org/10.1016/S0016-7037(99)00292-6

Algeo, T. J., Luo, G. M., Song, H. Y., Lyons, T. W. & Canfield, D. E. 2015. Reconstruction of secular variation in seawater sulfate concentrations. Biogeosciences, 12, 2131–2151.
https://doi.org/10.5194/bg-12-2131-2015

Amrani, A. 2014. Organosulfur compounds: molecular and isotopic evolution from biota to oil and gas. Annual Review of Earth and Planetary Sciences, 42, 733–768.
https://doi.org/10.1146/annurev-earth-050212-124126

Amrani, A., Lewan, M. D. & Aizenshtat, Z. 2005. Stable sulfur isotope partitioning during simulated petroleum formation as determined by hydrous pyrolysis of Ghareb Limestone, Israel. Geochimica et Cosmochimica Acta, 69, 5317–5331.
https://doi.org/10.1016/j.gca.2005.06.026

Anderson, T. F. & Pratt, L. M. 1995. Isotopic evidence for the origin of organic sulfur and elemental sulfur in marine sediments. Geochemical Transformations of Sedimentary Sulfur, 612, 378–396.
https://doi.org/10.1021/bk-1995-0612.ch021

Averyt, K. B. & Paytan, A. 2003. Empirical partition coefficients for Sr and Ca in marine barite: implications for recon­structing seawater Sr and Ca concentrations. Geochemistry, Geophysics, Geosystems, 4(5), 1–14.
https://doi.org/10.1029/2002GC000426

Butterfield, D. A., Nelson, B. K., Wheat, C. G., Mottl, M. J. & Roe, K. K. 2001. Evidence for basaltic Sr in midocean ridge-flank hydrothermal systems and implications for the global oceanic Sr isotope balance. Geochimica et Cosmochimica Acta, 65, 4141–4153.
https://doi.org/10.1016/S0016-7037(01)00712-8

Canfield, D. E. 2001. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochimica et Cosmochimica Acta, 65, 1117–1124.
https://doi.org/10.1016/S0016-7037(00)00584-6

Castellini, D. G., Dickens, G. R., Snyder, G. T. & Ruppel, C. D. 2006. Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico. Chemical Geology, 226, 1–30.
https://doi.org/10.1016/j.chemgeo.2005.08.008

Dymond, J., Suess, E. & Lyle, M. 1992. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography, 7, 163–181.
https://doi.org/10.1029/92PA00181

Eensaar, J., Gaškov, M., Pani, T., Sepp, H., Somelar, P. & Kirsimäe, K. 2017a. Hydrothermal fracture mineralization in the stable cratonic northern part of the Baltic Paleobasin: sphalerite fluid inclusion evidence. GFF, 139, 52–62.
https://doi.org/10.1080/11035897.2016.1196499

Eensaar, J., Pani, T., Gaškov, M., Sepp, H. & Kirsimäe, K. 2017b. Stable isotope composition of hypogenic speleothem calcite in Kalana (Estonia) as a record of microbial methanotrophy and fluid evolution. Geological Magazine, 154, 57–67.
https://doi.org/10.1017/S0016756815000928

Eickmann, B., Thorseth, I. H., Peters, M., Strauss, H., Brocker, M. & Pedersen, R. B. 2014. Barite in hydrothermal environ­ments as a recorder of subseafloor processes: a multiple-isotope study from the Loki’s Castle vent field. Geobiology, 12, 308–321.
https://doi.org/10.1111/gbi.12086

Giesemann, A., Jager, H. J., Norman, A. L., Krouse, H. P. & Brand, W. A. 1994. Online sulfur-isotope determination using an elemental analyzer coupled to a mass-spectrometer. Analytical Chemistry, 66, 2816–2819.
https://doi.org/10.1021/ac00090a005

Goldish, E. 1989. X-ray diffraction analysis of barium-strontium sulfate (barite-celestite) solid solutions. Powder Diffraction, 4, 214–216.
https://doi.org/10.1017/S0885715600013750

Greinert, J., Bollwerk, S. M., Derkachev, A., Bohrmann, G. & Suess, E. 2002. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seep sites. Earth and Planetary Science Letters, 203, 165–180.
https://doi.org/10.1016/S0012-821X(02)00830-0

Griffith, E. M. & Paytan, A. 2012. Barite in the ocean – occurrence, geochemistry and palaeoceanographic applications. Sedimentology, 59, 1817–1835.
https://doi.org/10.1111/j.1365-3091.2012.01327.x

Hanor, J. S. 2000. Barite–celestine geochemistry and environ­ments of formation. In Sulfate Minerals Crystallography, Geochemistry and Environmental Significance (Alpers, C. N., Jambor, J. L. & Nordstrom, K. D., eds), Reviews in Mineralogy and Geochemistry, 40, 193–275.
https://doi.org/10.2138/rmg.2000.40.4

Heidel, C., Tichomirowa, M. & Junghans, M. 2013. Oxygen and sulfur isotope investigations of the oxidation of sulfide mixtures containing pyrite, galena, and sphalerite. Chemical Geology, 342, 29–43.
https://doi.org/10.1016/j.chemgeo.2013.01.016

Hints, O., Martma, T., Männik, P., Nõlvak, J., Põldvere, A., Shen, Y. A. & Viira, V. 2014. New data on Ordovician stable isotope record and conodont biostratigraphy from the Viki reference drill core, Saaremaa Island, western Estonia. GFF, 136, 100–104.
https://doi.org/10.1080/11035897.2013.873989

Jamieson, J. W., Hannington, M. D., Tivey, M. K., Hansteen, T., Williamson, N. M. B., Stewart, M., Fietzke, J., Butterfield, D., Frische, M., Allen, L., Cousens, B. & Langer, J. 2016. Precipitation and growth of barite within hydrothermal vent deposits from the Endeavour Segment, Juan de Fuca Ridge. Geochimica et Cosmochimica Acta, 173, 64–85.
https://doi.org/10.1016/j.gca.2015.10.021

Judat, B. & Kind, M. 2004. Morphology and internal structure of barium sulfate – derivation of a new growth mechanism. Journal of Colloid and Interface Science, 269, 341–353.
https://doi.org/10.1016/j.jcis.2003.07.047

Kampschulte, A. & Strauss, H. 2004. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chemical Geology, 204, 255–286.
https://doi.org/10.1016/j.chemgeo.2003.11.013

Kiipli, E., Kiipli, T. & Kallaste, T. 2004. Bioproductivity rise in the East Baltic epicontinental sea in the Aeronian (Early Silurian). Palaeogeography, Palaeoclimatology, Palaeoecology, 205, 255–272.

https://doi.org/10.1016/j.palaeo.2003.12.011

Kontak, D. J., Kyser, K., Gize, A. & Marshall, D. 2006. Structurally controlled vein barite mineralization in the Maritimes Basin of eastern Canada: geologic setting, stable isotopes, and fluid inclusions. Economic Geology, 101, 407–430.
https://doi.org/10.2113/gsecongeo.101.2.407

Kusakabe, M. & Robinson, B. W. 1977. Oxygen and sulfur isotope equilibria in the BaSO4–HSO4−H2O system
from 110 to 350°C and applications. Geochimica et Cosmochimica Acta, 41, 1033–1040.

https://doi.org/10.1016/0016-7037(77)90098-9

Liivrand, E. 1990. Methodical Problems of Pleistocene Palyno­stratigraphy. Valgus, Tallinn, 176 pp.

Magnall, J. M., Gleeson, S. A., Stern, R. A., Newton, R. J., Poulton, S. W. & Paradis, S. 2016. Open system sulphate reduction in a diagenetic environment – isotopic analysis of barite (d34S and d18O) and pyrite (d34S) from the Tom and Jason Late Devonian Zn–Pb–Ba deposits, Selwyn Basin, Canada. Geochimica et Cosmochimica Acta, 180, 146–163.
https://doi.org/10.1016/j.gca.2016.02.015

Markovic, S., Paytan, A., Li, H. & Wortmann, U. G. 2016. A revised seawater sulfate oxygen isotope record for the last 4 Myr. Geochimica et Cosmochimica Acta, 175, 239–251.
https://doi.org/10.1016/j.gca.2015.12.005

Maynard, J. B., Morton, J., Valdes-Nodarse, E. L. & Diaz-Carmona, A. 1995. Sr isotopes of bedded barites: guide to distinguishing basins with Pb-Zn mineralization. Economic Geology and the Bulletin of the Society of Economic Geologists, 90, 2058–2064.
https://doi.org/10.2113/gsecongeo.90.7.2058

McArthur, J. M., Howarth, R. J. & Bailey, T. R. 2001. Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology, 109, 155–170.
https://doi.org/10.1086/319243

Naehr, T. H., Stakes, D. S. & Moore, W. S. 2000. Mass wasting, ephemeral fluid flow, and barite deposition on the California continental margin. Geology, 28, 315–318.
https://doi.org/10.1130/0091-7613(2000)28<315:MWEFFA>2.0.CO;2

Niin, M., Niin, S., Puura, V. & Taalmann, V. 1981. Fissure fillings in limestone quarries around Tallinn. In Settekivimid ja tektoonika [Sedimentary Rocks and Tectonics] (Pirrus, E., ed.), pp. 113–125. Estonian Academy of Sciences, Tallinn [in Estonian].

Onac, B. P., Hess, J. W. & White, W. B. 2007. The relation­ship between the mineral composition of speleothems and mineralization of breccia pipes: evidence from Corkscrew Cave, Arizona, USA. Canadian Mineralogist, 45, 1177–1188.
https://doi.org/10.2113/gscanmin.45.5.1177

Paškevičius, J. 1997. The Geology of the Baltic Republics. Vilnius University, Geological Survey of Lithuania, Vilnius, 387 pp.

Paytan, A., Kastner, M. & Chavez, F. P. 1996. Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science, 274, 1355–1357.
https://doi.org/10.1126/science.274.5291.1355

Paytan, A., Kastner, M., Campbell, D. & Thiemens, M. H. 1998. Sulfur isotopic composition of Cenozoic seawater sulfate. Science, 282, 1459–1462.
https://doi.org/10.1126/science.282.5393.1459

Paytan, A., Mearon, S., Cobb, K. M. & Kastner, M. 2002. Origin of marine barite deposits: Sr and S isotope characterization. Geology, 30, 747–750.
https://doi.org/10.1130/0091-7613(2002)030<0747:OOMBDS>2.0.CO;2

Pfaff, K., Hildebrandt, L. H., Leach, D. L., Jacob, D. E. & Markl, G. 2010. Formation of the Wiesloch Mississippi Valley-type Zn–Pb–Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany. Mineralium Deposita, 45, 647–666.
https://doi.org/10.1007/s00126-010-0296-5

Pin, C. & Bassin, C. 1992. Evaluation of a strontium-specific extraction chromatographic method for isotopic analysis in geological materials. Analytica Chimica Acta, 269, 249–255.
https://doi.org/10.1016/0003-2670(92)85409-Y

Preeden, U., Plado, J., Mertanen, S. & Puura, V. 2008. Multiply remagnetized Silurian carbonate sequence in Estonia. Estonian Journal of Earth Sciences, 57, 170–180.
https://doi.org/10.3176/earth.2008.3.05

Rushdi, A. I., McManus, J. & Collier, R. W. 2000. Marine barite and celestite saturation in seawater. Marine Chemistry, 69, 19–31.
https://doi.org/10.1016/S0304-4203(99)00089-4

Rye, R. O. 2005. A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chemical Geology, 215, 5–36.
https://doi.org/10.1016/j.chemgeo.2004.06.034

Seal, R. R., Alpers, C. N. & Rye, R. O. 2000. Stable isotope systematics of sulfate minerals. Sulfate Minerals Crystallography, Geochemistry and Environmental Significance, 40, 541–602.

Shen, Y. A., Buick, R. & Canfield, D. E. 2001. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 410, 77–81.
https://doi.org/10.1038/35065071

Shikazono, N. 1994. Precipitation mechanisms of barite in sulfate-sulfide deposits in back-arc basins. Geochimica et Cosmochimica Acta, 58, 2203–2213.
https://doi.org/10.1016/0016-7037(94)90005-1

Shikazono, N., Kawabe, H. & Ogawa, Y. 2012. Interpretation of mineral zoning in submarine hydrothermal ore deposits in terms of coupled fluid flow-precipitation kinetics model. Resource Geology, 62, 352–368.
https://doi.org/10.1111/j.1751-3928.2012.00201.x

Staude, S., Gob, S., Pfaff, K., Strobele, F., Premo, W. R. & Markl, G. 2011. Deciphering fluid sources of hydrothermal systems: a combined Sr- and S-isotope study on barite (Schwarzwald, SW Germany). Chemical Geology, 286, 1–20.
https://doi.org/10.1016/j.chemgeo.2011.04.009

Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36, 359–362.
https://doi.org/10.1016/0012-821X(77)90060-7

Stevens, E. W. N., Bailey, J. V., Flood, B. E., Jones, D. S., Gilhooly, W. P., Joye, S. B., Teske, A. & Mason, O. U. 2015. Barite encrustation of benthic sulfur-oxidizing bacteria at a marine cold seep. Geobiology, 13, 588–603.
https://doi.org/10.1111/gbi.12154

Taylor, J. C. 1991. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffraction, 6, 2–9.
https://doi.org/10.1017/S0885715600016778

Tinn, O., Meidla, T., Ainsaar, L. & Pani, T. 2009. Thallophytic algal flora from a new Silurian Lagerstätte. Estonian Journal of Earth Sciences, 58, 38–42.
https://doi.org/10.3176/earth.2009.1.04

Torres, M. E., Bohrmann, G., Dube, T. E. & Poole, F. G. 2003. Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins. Geology, 31, 897–900.
https://doi.org/10.1130/G19652.1

Valenza, K., Moritz, R., Mouttaqi, A., Fontignie, D. & Sharp, Z. 2000. Vein and karst barite deposits in the western Jebilet of Morocco: fluid inclusion and isotope (S, O, Sr) evidence for regional fluid mixing related to central Atlantic rifting. Economic Geology and the Bulletin of the Society of Economic Geologists, 95, 587–605.
https://doi.org/10.2113/95.3.587

Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G. & Strauss, H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161, 59–88.
https://doi.org/10.1016/S0009-2541(99)00081-9

Zhang, J. Z. & Millero, F. J. 1994. Kinetics of oxidation of hydrogen-sulfide in natural-waters. Environmental Geochemistry of Sulfide Oxidation, 550, 393–409.
https://doi.org/10.1021/bk-1994-0550.ch026

 

Back to Issue