The article presents new data on sedimentological structures, which have been discovered at the Ryadino archaeological excavation in the northeast of the Kaliningrad District of Russia (the Šešupė River Valley). Tongue-shaped and dome-shaped diapir-like structures indicate liquefaction-induced features. As the most plausible reason, the earthquake-induced shaking is discussed. A preliminary estimation of the time interval for the seismic event covers the period from the early up to the late Holocene. The reasons for seismic activity in this region can be related to neotectonic movements (including glacio-isostatic rebound) as recorded in the southeastern Baltic Sea area of the Fennoscandian ice sheet margin zone. The relation between a palaeoseismic event and the essential changes in the hydrographic network in the region is also discussed.
Aizberg, R. Y., Frischbutter, A., Garetsky, R. G., Garbar, D., Grünthal, G., Karabanov, A. K., Karataev, A. K., Kockel, F., Levkov, E. A., Ludwig, A. O., Lykke-Andersen, H., Matoshko, A. V., Ostaficzuk, S., Palijenko, V. P., Schwab, G., Sim, L. S., Šliaupa, A., Šliaupa, S., Sokołowski, J., Straume, J., Stackebrandt, W. & Stromeyer, D. 2001. Neogeodynamics of the Baltic Sea depression and adjacent areas. Results of IGCP Project 346. Brandenburgische Geowissenschaftliche Beiträge Kleinmachnow, 1, 27–37.
Biske, J., Sumareva, I. & Shitov, M. 2006. Pozdnegolotsenovoe sejsmicheskoe sobytie v Yugo-Vostochnom Priladozhje. Printsipy issledovaniya i deformatsionnye tekstury [Late glacial seismic event in the South-Eastern Ladoga region. Principles of research and deformation textures]. Vestnik Sankt-Peterburgskogo Universiteta, Ser. 7, 1, 3–25 [in Russian].
Bitinas, A. 2012. Implications of the palaeoseismicity of the Eastern Baltic Sea Region. Quaternary International, 11, 52–53.
Bitinas, A. & Lazauskienė, J. 2011. Implications of palaeoseismic events based on the analysis of the structures of the Quaternary deposits. In Geosciences in Lithuania: Challenges and Perspectives. Baltica, 24, Special issue, 127–130 [in Lithuanian, with English abstract].
Bitinas, A., Druzhinina, O., Damušytė, A., Napreenko-Dorokhova, T., Guobytė, R. & Mažeika, J. 2017. The lower reaches of the Nemunas River at the end of the Last (Weichselian) Glacial and beginning of the Holocene. Geological Quarterly, 61, 156–165.
https://doi.org/10.7306/gq.1337
Brandes, C., Steffen, H., Steffen, R. & Wu, P. 2015. Intraplate seismicity in northern Central Europe is induced by the last glaciation. Geology, 46, 611–614.
https://doi.org/10.1130/G36710.1
Bregman, E. P. H. 2015. De aardkundige opbouw van het landschap [The geological structure of the landscape]. In Biografie van de Drentsche Aa [Biography of the Aa River] (Spek, T., Elerie, H. & Noordhoff, I., eds), pp. 23–26. Uitgave: van Gorcum, Assen [in Dutch].
Bronk Ramsey, C. & Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon, 55, 720–730.
https://doi.org/10.1017/S0033822200057878
Damušytė, A. 2011. Post-Glacial Geological History of the Lithuanian Coastal Area. Summary of doctoral dissertation, Physical sciences, geology (05P), Vilnius, 84 pp.
Druzhinina, O. A. 2012. Rezul´taty geokhimicheskikh issledovanii kul´turnogo sloya arkheologicheskogo pamyatnika Ryadino 5 [Results of the geochemical investigations of the Ryadino 5 archaeological site]. Vestnik Baltijskogo Federal´nogo Universiteta im. Kanta, 1, 29–33 [in Russian].
Druzhinina, O., Molodkov, A., Bitinas, A. & Bregman, E. 2016. The oldest evidence for human habitation in the Baltic region: a preliminary report on the chronology and archaeological context. Geoarchaeology, 31, 156–164.
https://doi.org/10.1002/gea.21553
Gosudarstvennaya Geologicheskaya Karta Rossijskoj Federatsii, 2011. Karta dochetvertichnykh obrazovanii. Scale 1: 1000000. No. 34 (Kaliningrad) [Geological Map of Russian Federation, 2011. Pre-Quaternary Map. No. 34, Kaliningrad Region. Scale 1:1,000,000]. Izdatel´stvo VSEGEI, St. Petersburg [in Russian].
Grützner, C., Fischer, P. & Reicherter, K. 2016. Holocene surface ruptures of the Rurrand Fault, Germany – insights from palaeoseismology, remote sensing and shallow geophysics. Geophysical Journal International, 204, 1662–1677.
https://doi.org/10.1093/gji/ggv558
Guobytė, R. & Jusienė, A. 2007. Rambynas: the Vilkyškiai ice marginal ridge. In The Quaternary of Western Lithuania: from the Pleistocene Glaciations to the Evolution of the Baltic Sea: Excursion Guide: The INQUA Peribaltic Group Field Symposium, May 27 – June 02, 2007, Plateliai, Lithuania, pp. 77–81. Lithuanian Geological Survey, Institute of Geology and Geography, Vilnius.
Hoffmann, G. & Reicherter, K. 2012. Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany). International Journal of Earth Sciences, 101, 351–363.
https://doi.org/10.1007/s00531-010-0633-z
Houtgast, R. F., van Balen, R. T. & Kasse, C. 2005. Late Quaternary evolution of the Feldbiss Fault (Roer Valley Rift System, the Netherlands) based on trenching, and its potential relation to glacial unloading, Quaternary Science Reviews, 24, 489–508.
https://doi.org/10.1016/j.quascirev.2004.01.012
Michetti, A., Audemard, F. & Marco, S. 2005. Future trends in paleoseismology: integrated study of the seismic landscape as a vital tool in seismic hazard analyses. Tectonophysics, 408, 3–21.
https://doi.org/10.1016/j.tecto.2005.05.035
Molodkov, A. & Bitinas, A. 2006. Sedimentary record and luminescence chronology of the Lateglacial and Holocene aeolian sediments in Lithuania. Boreas, 35, 244–254.
https://doi.org/10.1080/03009480600584915
Montenat, C., Barrier, P., Ott d’Estevou, P. & Hibsch, C. 2007. Seismites: an attempt at critical analysis and classification. Sedimentary Geology, 196, 5–30.
https://doi.org/10.1016/j.sedgeo.2006.08.004
Mörner, N.-A. 1985. Paleoseismicity and geodynamics in Sweden. Tectonophysics, 117, 139–153.
https://doi.org/10.1016/0040-1951(85)90242-2
Mörner, N.-A. 2003. Paleoseismicity of Sweden – a Novel Paradigm. A Contribution to INQUA from its Sub-Commission on Paleoseismology at the 16th International INQUA Congress in Reno, Nevada. P&G Print, 2003, 20 pp.
Mörner, N.-A. 2011. Palaeoseismology: the application of multiple parameters in four case studies in Sweden. Quaternary International, 242, 65–75.
https://doi.org/10.1016/j.quaint.2011.03.054
Mörner, N.-A. 2013. Patterns in seismology and palaeoseismology, and their application in long-term hazard assessments – the Swedish case in view of nuclear waste management. Pattern Recognition in Physics, 1, 75–89.
https://doi.org/10.5194/prp-1-75-2013
Mörner, N.-A. & Dawson, S. 2012. Tsunamis in the Maldives, Scotland and Sweden – three case studies. Quaternary International, 11, 371–388.
https://doi.org/10.1016/j.quaint.2012.08.987
Neuwerth, R., Suter, F., Guzman, C. & Corin, G. 2006. Soft-sediment deformation in tectonically active area: the Plio-Pleistocene Zarzal Formation in the Cauca Valley (Western Columbia). Sedimentary Geology, 186, 67–88.
https://doi.org/10.1016/j.sedgeo.2005.10.009
Nikonov, A. A. 2004. Evidence of paleotsunami in the early Holocene Lake Kunda (southern coast of the Gulf of Finland). Doklady Earth Sciences, 396, 477–480.
Nikonov, A. A. 2008a. Sejsmicheskij rezhim i teplovye anomalii v Yugo-Vostochnoj Baltike v period podgotovki i realizatsii kaliningradskikh zemletryasenij 2004 g. [Seismic regime and thermal anomalies in the South-Eastern Baltic during preparation and implementation of the Kaliningrad earthquakes in 2004]. Fizika Zemli, 11, 64–76 [in Russian].
Nikonov, A. A. 2008b. O sejsmicheskikh yavleniyakh v Vostochno-Baltijskoj oblasti v 17 veke [Seismic phenomena in the Eastern Baltic Region in the 17th century]. Voprosy Inzhenernoj Seismologii, 35(3), 26–38 [in Russian].
Nikonov, A. A. 2010. Poverhnostnye narusheniya pri Kaliningradskom zemletryasenii 21.09.2004 g. i ikh sootnoshenie s gradatsiyami makrosejsmicheskikh shkal [Surface ruptures during the Kaliningrad earthquake on 21 September 2004 and their correlation with the macro-seismic scale]. Voprosy Inzhenernoj Seismologii, 37(1), 56–67 [in Russian].
Nikonov, A. A. 2013. Novyj étap poznaniya sejsmichnosti Vostochno-Evropejskoj platformy i ee obramleniya [A new stage in the knowledge of the seismicity of the East European platform and its framing]. Doklady Akademii Nauk, 450, 465–469 [in Russian].
Nikonov, A. A., Enman, S. V. & Fleyfel, L. D. 2009. Sovremennye i pozdnegolotsenovye vertikal´nye dvizheniya zemnoj kory v Yugo-Vostochnoj Baltike – perehodnoj zone ot Fennoskandinavskogo shchita k Russkoj plite [Modern and late Holocene vertical earth crust movements in the South-Eastern Baltic as a transitional zone between the Fennoscandian shield and the Russian plate]. Fizika Zemli, 8, 51–65 [in Russian].
Obermeier, S. F. & Pond, E. C. 1998. Issues in Using Liquefaction Features for Paleoseismic Analysis. U.S. Geological Survey Open-File Report 98-28, 38 pp.
Obermeier, S. F., Pond, E. C., Olson, S. M. & Green, R. A. 2002. Paleoliquefaction studies in continental settings. Geological Society of America Special Paper, 359, 13–27.
https://doi.org/10.1130/0-8137-2359-0.13
Obermeier, S. F., Olson, S. M. & Green, R. A. 2005. Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking. Engineering Geology, 76, 209–234.
https://doi.org/10.1016/j.enggeo.2004.07.009
Pisarska-Jamroźy, M. & Weckwerth, P. 2013. Soft-sediment deformation structures in a Pleistocene glaciolacustrine delta and their implications for the recognition of subenvironments in delta deposits. Sedimentology, 60, 637–665.
https://doi.org/10.1111/j.1365-3091.2012.01354.x
Rotnicki, K., Rotnicka, J., Goslar, T. & Wawrzyniak-Wydrowska, B. 2016. The first geological record of a palaeotsunami on the southern coast of the Baltic Sea, Poland. Geological Quarterly, 60, 417–440.
https://doi.org/10.7306/gq.1294
Sandersen, P. B. E. & Jørgensen, F. 2015. Neotectonic deformation of a Late Weichselian outwash plain by deglaciation-induced fault reactivation of a deep-seated graben structure. Boreas, 44, 413–431.
https://doi.org/10.1111/bor.12103
Seilacher, A. 1969. Fault-graded beds interpreted as seismites. Sedimentology, 13, 155–159.
https://doi.org/10.1111/j.1365-3091.1969.tb01125.x
Shanmugam, G. 2016. The seismite problem. Journal of Palaeogeography, 5, 318–362.
https://doi.org/10.1016/j.jop.2016.06.002
Sirocko, F., Szeder, T., Seelos, C., Lehné, R., Rein, B., Schneider, W. M. & Dimke, M. 2002. Young tectonic and halokinetic movements in the North-German Basin: its effects on formation of modern rivers and surface morphology. Netherlands Journal of Geosciences, 81, 431–441.
https://doi.org/10.1017/S0016774600022708
Šliaupa, S., Bitinas, A. & Zakarevičius, A. 2005. Predictive model of the vertical movements of the Earth’s surface: implications for the land use of the Lithuanian coastal area. Social Strategies, 40, 221–235.
Steffen, H. & Wu, P. 2011. Glacial isostatic adjustment in Fennoscandia – a review of data and modeling. Journal of Geodynamics, 52, 169–204.
https://doi.org/10.1016/j.jog.2011.03.002
Stewart, I. S., Sauber, J. & Rose, J. 2000. Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quaternary Science Reviews, 19, 1367–1389.
https://doi.org/10.1016/S0277-3791(00)00094-9
Van Loon, A. J. & Pisarska-Jamroźy, M. 2014. Sedimentological evidence of Pleistocene earthquakes in NW Poland induced by glacio-isostatic rebound. Sedimentary Geology, 300, 1–10.
https://doi.org/10.1016/j.sedgeo.2013.11.006
Van Loon, A. J., Pisarska-Jamroźy, M., Nartišs, M., Krievāns, M. & Soms, J. 2016. Seismites resulting from high-frequency, high-magnitude earthquakes in Latvia caused by Late Glacial glacio-isostatic uplift. Journal of Palaeogeography, 5, 363–380.
https://doi.org/10.1016/j.jop.2016.05.002
Veski, S., Heinsalu, A., Klassen, V., Kriiska, A., Lõugas, L., Poska, A. & Saluäär, U. 2005. Early Holocene coastal settlement and palaeoenvironment on the shore of the Baltic Sea at Pärnu, southwestern Estonia. Quaternary International, 130, 75–85.
https://doi.org/10.1016/j.quaint.2004.04.033