A sediment core collected from the northwestern part of the Curonian Lagoon, which was deposited approximately during 1800-2002, was analysed for several proxy records. Changes in diatom assemblages and carbon, nitrogen and oxygen stable isotopes (δ13C, δ15N and δ18O) revealed two periods, which are characterized by differences in the sedimentation rate, sediment type and trophic state of the northern part of the Curonian Lagoon. Low δ15N values in organics and prevailing fresh-brackish benthic diatoms indicate low enrichment in the shallow, freshwater lagoon during the period 1800-1955. The eutrophic conditions in this shallow lagoon are reflected by a high abundance of planktonic diatoms common in nutrient-rich basins and increased d15N values in organics of the sediments since 1955. Starting approximately in the 1960s, decreased freshwater run-off and increased brackish-water inflow into the lagoon were observed. These changes were likely caused by the construction of the hydropower station (and a reservoir) near the Nemunas River and the artificial deepening of the Klaipėda Strait during 1960-1962 and later, also by the rising sea level in the SE Baltic. The changed river run-off and the artificially deepened strait significantly influenced the fresh-brackish water circulation and environmental conditions in the northern part of the Curonian Lagoon in the last decades.
Aleksandrov, S. V. & Dmitrieva, O. A. 2006. Primary production and phytoplankton characteristics as eutrophication criteria of Kursiu Marios Lagoon, the Baltic Sea. Water Resources, 33, 97-133.
https://doi.org/10.1134/S0097807806010118
Andrén, E., Shmmield, G. & Brand, T. 1999. Environmental changes of the last three centuries indicated by siliceous microfossil records from the southwestern Baltic Sea. The Holocene, 9, 25-38.
https://doi.org/10.1191/095968399676523977
Appleby, P. G. 2001. Chronostratigraphic techniques in recent sediments. In Tracking Environmental Change Using Lake Sediments. Basin Analysis, Coring, and Chronological Techniques, Vol. 1 (Last, W. M. & Smol, J. P., eds), pp. 171–203. Kluwer Academic Publishers, Dordrecht.
https://doi.org/10.1007/0-306-47669-X_9
Appleby, P. G. & Oldfield, F. 1978. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, 5, 1–8.
https://doi.org/10.1016/S0341-8162(78)80002-2
Balesdent, J. & Mariotti, A. 1996. Measurement of soil organic matter turnover using 13C natural abundance. In Mass Spectrometry of Soils (Boutton, T. W. & Yamasaki, S., eds), pp. 83–112. Marcel Dekker, New York.
Barinova, S. S., Medvedeva, L. A. & Anissimova, O. V. 2006. Diversity of Algal Indicators in Environmental Assessment. Pilies Studio. Tel Aviv, 498 pp. [in Russian, with English summary].
Battarbee, R. W. 1986. Diatom analysis. In Handbook of Holocene Palaeoecology and Palaeohydrology (Berglund, B. E., ed.), pp. 527–570. Wiley & Sons, Chichester.
Bengtsson, L. & Enell, M. 1986. Chemical analysis. In Handbook of Holocene Palaeoecology and Palaeohydrology (Berglund, B. E., ed.), pp. 423–451. Wiley & Sons, Chichester.
Binford, M. W. 1990. Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. Journal of Paleolimnology, 3, 253–267.
https://doi.org/10.1007/BF00219461
Broecker, W. S. 1982. Glacial to interglacial changes in ocean chemistry. Progress in Oceanography, 11, 151-197.
https://doi.org/10.1016/0079-6611(82)90007-6
Bubinas, A., Kasperovičienė, J. & Repečka, M. 1998. Distribution of diatoms and zoobenthos in the bottom sediments of the nearshore aquatory of the Baltic Sea between Klaipėda and Šventoji. Ekologija, 3, 40-49 [in Lithuanian].
Ceburnis, D., Garbaras, A., Szidat, S., Rinaldi, M., Fahrni, S., Perron, N., Wacker, L., Leinert, S., Remeikis, V., Facchini, M. C., Prevot, A. S. H., Jennings, S. G., Ramonet, M. & O’Dowd, C. D. 2011. Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis. Atmospheric Chemistry and Physics, 11, 8593–8606.
https://doi.org/10.5194/acp-11-8593-2011
Cooper, S., Gaiser, E. & Wachnicka, A. 2010. Estuarine environmental reconstructions using diatoms. In The Diatoms: Applications for the Environmental and Earth Sciences (Smol, J. P. & Stoermer, E. F., eds), pp. 324-345. Cambridge University Press, New York.
https://doi.org/10.1017/CBO9780511763175.018
Dailidienė, I. & Davulienė, L. 2007. Long-term mean salinity in the Curonian Lagoon in 1993-2005. Acta Zoologica Lithuanica, 17, 172-181.
https://doi.org/10.1080/13921657.2007.10512829
Dailidienė, I. & Davulienė, L. 2008. Salinity trend and variation in the Baltic Sea near the Lithuanian coast and in the Curonian Lagoon in 1984-2005. Journal of Marine Systems, 74, S20-S29.
https://doi.org/10.1016/j.jmarsys.2008.01.014
Dailidienė, I., Davulienė, L., Tilickis, B., Stankevičius, A. & Myrberg, K. 2006. Sea level variability at the Lithuanian coast of the Baltic Sea. Boreal Environment Research, 11, 109-121.
Dailidienė, I., Baudler, H., Chubarenko, B. & Navrotskaya, S. 2011. Long term water level and surface temperature changes in the lagoons of the southern and eastern Baltic. Oceanologia, 53, 293-308.
https://doi.org/10.5697/oc.53-1-TI.293
Dubra, J. 1978. Water balance. In The Curonian Lagoon, Vol. 2 (Rainys, A., ed.), pp. 50-70. Vilnius [in Lithuanian].
Epstein, S. & Mayeda, T. 1953. Variation of O18 content of waters from natural sources. Geochimica et Cosmo-chimica Acta, 4, 213-224.
https://doi.org/10.1016/0016-7037(53)90051-9
Ferrarin, Ch., Razinkovas, A., Gulbinskas, S., Umgiesser, G. & Bliūdžiutė, L. 2008. Hydraulic regime-based zonation scheme of the Curonian Lagoon. Hydrobiologia, 611, 133-146.
https://doi.org/10.1007/s10750-008-9454-5
Gailiušis, B., Kovalenkovienė, M. & Kriaučiūnienė, J. 2005. Hydrological and hydraulic investigations in water area in the Curonian Lagoon between the island Kiaulės Nugara and Alksnynė. Energetika, 4, 34-41 [in Lithuanian].
Gailiušis, B., Kriaučiūnienė, J., Jakimavičius, D. & Šarauskienė, D. 2011. The variability of long-term runoff series in the Baltic Sea drainage area. Baltica, 24, 45-54.
Garbaras, A., Andriejauskienė, J., Barisevičiūtė, R. & Remeikis, V. 2008. Tracing of atmospheric aerosol sources using stable carbon isotopes. Lithuanian Journal of Physics, 48, 259-264.
https://doi.org/10.3952/lithjphys.48309
Gasiūnaitė, Z. R, Cardoso, A. C., Heiskanen, A.-S., Henriksen, P., Kauppila, P., Olenina, I., Pilkaitytė, R., Purina, I., Razinkovas, A., Sagert, S., Schubert, H. & Wasmund, N. 2005. Seasonality of coastal phytoplankton in the Baltic Sea: influence of salinity and eutrophication. Estuarine, Coastal and Shelf Science, 54, 239-252.
https://doi.org/10.1007/978-3-540-73524-3_9
Gasiūnaitė, Z., Daunys, D., Olenin, S. & Razinkovas, A. 2008. The Curonian lagoon. In Ecology of Baltic Coastal Waters (Schiewer, U., ed.), pp. 197-215. Springer, Heidelberg.
https://doi.org/10.1007/978-3-540-73524-3_9
Grimm, E. C. 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences, 13, 13-35.
https://doi.org/10.1016/0098-3004(87)90022-7
Grimm, E. C. 1992. Tilia and Tilia-graph: pollen spreadsheet and graphic programs. In Programs and Abstracts, 8th International Palynological Congress, Aix-en-Provence, France, September 6–12, 1992. 56 pp.
Gudelis, A., Remeikis, V., Plukis, A. & Lukauskas, D. 2000. Efficiency calibration of HPGe detectors for measuring environmental samples. Environmental and Chemical Physics, 22, 117-125.
Harwood, A. J. P., Dennis, P. F., Marca, A. D., Pilling, G. M. & Millner, R. S. 2008. The oxygen isotope composition of water masses within the North Sea. Estuarine, Coastal and Shelf Science, 78, 353-359.
https://doi.org/10.1016/j.ecss.2007.12.010
Jakimavičius, D. & Kovalenkovienė, M. 2010. Long-term water balance of the Curonian Lagoon in the context of anthropogenic factors and climate changes. Baltica, 23, 33-46.
Jakimavičius, D. & Kriaučiūnienė, J. 2011. Influence of the Klaipėda Strait seaport development on the water balance of the Curonian Lagoon. In The 8th International Conference “Environmental Engineering”, May 19-20, 2011, Vilnius, Lithuania. Selected papers, pp. 573-577.
Karosienė, J. & Paškauskas, R. 2012. Spatial variability of epiphyton communities structure in a temperate estuarine lagoon. Estuarine, Coastal and Shelf Science, 114, 100-104.
https://doi.org/10.1016/j.ecss.2011.08.017
Kasperovičienė, J. & Vaikutienė, G. 2007. Long-term changes in diatom communities of phytoplankton and the surface sediments in the Curonian Lagoon (Lithuanian part). Transitional Waters Bulletin, 1, 27-37.
Kiss, K. T., Klee, R., Ector, L. & Ács, E. 2012. Centric diatoms of large rivers and tributaries in Hungary: morphology and biogeographic distribution. Acta Botanica Croatica, 71, 311-363.
https://doi.org/10.2478/v10184-011-0067-0
Krammer, K. & Lange-Bertalot, H. 1986–1991. Bacillariophyceae. In Süßwasserflora von Mitteleuropa, 2 (Teil 1–4) (Ettl, H., Gerloff, J., Heynig, H. & Mollenhauer, D., eds). VEB Gustav Fischer Verlag, Stuttgart/Jena, Germany.
Lass, H. U. & Matthäus, W. 2008. General oceanography of the Baltic Sea. In State and Evolution of the Baltic Sea, 1952-2005 (Feister, R., Nausch, G. & Wasmund, N., eds), pp. 5-43. John Willey & Sons, Inc., Hoboken, New Jersey.
https://doi.org/10.1002/9780470283134.ch2
Leng, M. J. & Marshall, J. D. 2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23, 811-831.
https://doi.org/10.1016/j.quascirev.2003.06.012
Lesutienė, J., Bukaveckas, P. A., Gasiūnaitė, Z. R., Pilkaitytė, R. & Razinkovas-Baziukas, A. 2014. Tracing the isotopic signal of a cyanobacteria bloom through the food web of a Baltic Sea coastal lagoon. Estuarine, Coastal and Shelf Science, 138, 47-56.
https://doi.org/10.1016/j.ecss.2013.12.017
Linkevičienė, R. 2009. Impact of river capture on hydrography and water resources: case study of Ūla and Katra catchments, south Lithuania. The Holocene, 19, 1233-1240.
https://doi.org/10.1177/0959683609345081
Loseva, E. I. 2000. Atlas of Freshwater Pleistocene Diatoms from Northeastern Europe. Nauka, St. Petersburg, 213 pp. [in Russian, with English summary].
Lujanienė, G., Mažeika, J., Li, H. C., Petrošius, R., Barisevičiūtė, R., Jokšas, K., Remeikaitė-Nikienė, N., Malejevas, V., Garnaga, G., Stankevičius, A., Kulakauskaitė, I. & Povinec, P. P. 2015. Δ14C and δ13C variations in organic fractions of Baltic Sea sediments. Radiocarbon, 57, 481-495.
https://doi.org/10.2458/azu_rc.57.18358
Marčiulionienė, D., Mažeika, J., Lukšienė, B., Jefanova, O., Mikalauskienė, R. & Paškauskas, R. 2015. Anthropogenic radionuclide fluxes and distribution in bottom sediments of the cooling basin of the Ignalina Nuclear Power Plant. Journal of Environmental Radioactivity, 145, 48-57.
https://doi.org/10.1016/j.jenvrad.2015.03.007
Mažeika, J. 2006. The use of lead-210 and carbon-14 in investigations of peat accumulation in the Aukštumala raised bog, western Lithuania. Baltica, 19, 30-37.
Middelburg, J. J. & Nieuwenhuize, J. 1998. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Marine Chemistry, 60, 217-225.
https://doi.org/10.1016/S0304-4203(97)00104-7
Müller, A. & Voss, M. 1999. The palaeoenvironments of coastal lagoons in the southern Baltic Sea, II. d13C and d15N ratios of organic matter-sources and sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 145, 17-32.
https://doi.org/10.1016/S0031-0182(98)00095-9
Newton, A., Icely, J., Cristina, S., Brito, A., Cardoso, A. C., Colijn, F., Dalla Riva, S., Gertz, F., Hansen, J. W., Holmer, M., Ivanova, K., Leppäkoski, E., Canu, D. M., Mocenni, Ch., Mudge, S., Murray, N., Pejrum, M., Razinkovas, A., Reizopoulou, S., Pérez-Ruzafa, A., Schernewski, G., Schubert, H., Carr, L., Solidoro, C., Viaroli, P. & Zaldívar, J. M. 2014. An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuarine, Coastal and Shelf Science, 140, 95-122.
https://doi.org/10.1016/j.ecss.2013.05.023
Paul, D. & Skrzypek, G. 2007. Assessment of carbonate-phosphoric acid analytical technique performed using GasBench II in continuous flow isotope ratio mass spectrometry. International Journal of Mass Spectrometry, 262, 180-186.
https://doi.org/10.1016/j.ijms.2006.11.006
Peterson, B. J. & Fry, B. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18, 293-320.
https://doi.org/10.1146/annurev.es.18.110187.001453
Piotrowska, N., De Vleeschouwer, F., Sikorski, J., Pawlyta, J., Fagel, N., Le Roux, G. & Pazdur, A. 2010. Intercomparison of radiocarbon bomb pulse and 210Pb age models. A study in a peat bog core from North Poland. Nuclear Instruments and Methods in Physics Research, Section B, 268, 1163-1166.
https://doi.org/10.1016/j.nimb.2009.10.124
Remeikaitė-Nikienė, N., Lujanienė, G., Malejevas, V., Barisevičiūtė, R., Žilius, M., Garnaga-Budrė, G. & Stankevičius, A. 2016. Distribution and sources of organic matter in sediments of the south-eastern Baltic Sea. Journal of Marine Systems, 157, 75-81.
https://doi.org/10.1016/j.jmarsys.2015.12.011
Rolff, C. 2000. Seasonal variation in δ13C and δ15N of size-fractionated plankton at a coastal station in the northern Baltic proper. Marine Ecology, Progress Series, 203, 47-65.
https://doi.org/10.3354/meps203047
Round, F. E., Crawford, R. M. & Mann, D. G. 1990. Diatoms: Biology and Morphology of the Genera. Cambridge University Press, New York, 747 pp.
Savage, C., Leavitt, P. R. & Elmgren, R. 2010. Effect of land use, urbanization and climate variability on coastal eutrophication in the Baltic Sea. Limnology and Oceanography, 55, 1033-1046.
https://doi.org/10.4319/lo.2010.55.3.1033
Snoeijs, P. (ed.). 1993. Intercalibration and Distribution of Diatom Species in the Baltic Sea, Vol. 1. The Baltic Marine Biologists Publication, 16a, Opulus Press, Uppsala, 129 pp.
Snoeijs, P. & Balashova, N. (eds). 1998. Intercalibration and Distribution of Diatom Species in the Baltic Sea, Vol. 5. The Baltic Marine Biologists Publication, 16e, Opulus Press, Uppsala, 144 pp.
Snoeijs, P. & Kasperovičienė, J. (eds). 1996. Intercalibration and Distribution of Diatom Species in the Baltic Sea, Vol. 4. The Baltic Marine Biologists Publication, 16d, Opulus Press, Uppsala, 126 pp.
Snoeijs, P. & Potapova, M. (eds). 1995. Intercalibration and Distribution of Diatom Species in the Baltic Sea, Vol. 3. The Baltic Marine Biologists Publication, 16c, Opulus Press, Uppsala, 126 pp.
Snoeijs, P. & Vilbaste, S. (eds). 1994. Intercalibration and Distribution of Diatom Species in the Baltic Sea, Vol. 2. The Baltic Marine Biologists Publication, 16b, Opulus Press, Uppsala, 125 pp.
Stein, R. 1990. Organic carbon content/sedimentation rate relationship and its paleoenvironmental significance for marine sediments. Geo-Marine Letters, 10, 37-44.
https://doi.org/10.1007/BF02431020
Struck, U., Emeis, K.-C., Voss, M., Christiansen, C. & Kuzendorf, H. 2000. Records of southern and central Baltic Sea eutrophication in d13C and d15N of sedimentary organic matter. Marine Geology, 164, 157-171.
https://doi.org/10.1016/S0025-3227(99)00135-8
Suzdalev, S., Gulbinskas, S. & Blažauskas, N. 2015. Distribution of tributyltin in surface sediments from transitional marine-lagoon system of the south-eastern Baltic Sea, Lithuania. Environmental Science and Pollution Research, 22, 2634-2642.
https://doi.org/10.1007/s11356-014-3521-4
Trimonis, E., Gulbinskas, S. & Kuzavinis, M. 2003. The Curonian Lagoon bottom sediments in the Lithuanian water area. Baltica, 16, 13-20.
Trimonis, E., Vaikutienė, G. & Gulbinskas, S. 2010. Seasonal and spatial variations of sedimentary matter and diatom transport in the Klaipėda Strait (Eastern Baltic). Baltica, 23, 127-134.
Trobajo, R. & Sullivan, M. J. 2010. Applied diatom studies in estuaries and shallow coastal environments. In The Diatoms: Applications for the Environmental and Earth Sciences (Smol, J. P. & Stoermer, E. F., eds), pp. 309-323. Cambridge University Press, New York.
https://doi.org/10.1017/CBO9780511763175.017
Tuovinen, N., Weckström, A. & Virtasalo, J. J. 2010. Assessment of recent eutrophication and climate influence in the Archipelago Sea based on the subfossil diatom record. Journal of Paleolimnology, 44, 95-108.
https://doi.org/10.1007/s10933-009-9390-z
Van Dam, H., Mertens, A. & Sinkeldam, J. 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Journal of Aquatic Ecology, 28, 117-133.
Voss, M., Larsen, B., Leivuori, M. & Vallius, H. 2000. Stable isotope signals of eutrophication in Baltic Sea sediments. Journal of Marine Systems, 25, 287-298.
https://doi.org/10.1016/S0924-7963(00)00022-1
Voss, M., Dippner, J. W., Humborg, C., Hürdler, J., Korth, F., Neumann, T., Schernewski, G. & Venohr, M. 2011. History and scenarios of future development of Baltic Sea eutrophication. Estuarine, Coastal and Shelf Science, 92, 307-322.
https://doi.org/10.1016/j.ecss.2010.12.037
Wang, L., Lu, H., Liu, J., Gu, Z., Mingram, J., Chu, G., Li, J., Rioual, P., Negendank, J. F. V., Han, J. & Liu, T. 2008. Diatom based inference of variations in the strength of Asian winter monsoon wind between 17500 and 6000 calendar years BP. Journal of Geophysical Research, 13, D21101.
Weckström, K. 2006. Assessing recent eutrophication in coastal waters of the Gulf of Finland (Baltic Sea) using subfossil diatoms. Journal of Paleolimnology, 35, 571-592.
https://doi.org/10.1007/s10933-005-5264-1
Yamamuro, M. & Kanai, Y. 2005. A 200-year record of natural and anthropogenic changes in water quality from coastal lagoon sediments of Lake Shinji, Japan. Chemical Geology, 218, 51-61.
https://doi.org/10.1016/j.chemgeo.2005.01.021
Žaromskis, R. 1996. Oceans, Seas and Estuaries. Debesija, Vilnius, 293 pp. [in Lithuanian, with English summary].
Zemlys, P., Ferrarin, C., Umgiesser, G., Gulbinskas, S. & Bellafiore, D. 2013. Investigation of saline water intrusions into the Curonian Lagoon (Lithuania) and two-layer flow in the Klaipeda Strait using finite element hydrodynamic model. Ocean Science, 9, 573-584.https://doi.org/10.5194/os-9-573-2013