Palaeolimnological techniques were utilized to determine the extent of the effect of anthropogenic pollutants or other environmental stressors on three lake ecosystems over the last 200 years. The ecology of the study sites has experienced significant changes due to various activities such as (1) extensive catchment drainage and using poisoning as a fish management measure, (2) seepage of urban waste water due to establishment and growth of a town and (3) artificial inflow of oil-shale mining waters. Sediment geochemical composition, fossil pigments and Cladocera remains from the sediment cores were analysed to demonstrate that sufficient information can be derived from sediments to permit a historical reconstruction. The integrated use of archival maps, historical records and lake monitoring data confirmed links to anthropogenic pollutants, primarily on the catchment level. The examples show how the sediment indicators provide unique insights into the causes and temporal dynamics of lake ecosystem changes relevant for environmental management decisions. This study demonstrates that palaeolimnology has great potential to assist in eutrophication assessment and management efforts in waterbodies.
Airs, R. L., Atkinson, J. E. & Keely, B. J. 2001. Development and application of a high resolution liquid chromatographic method for the analysis of complex pigment distributions. Journal of Chromatography, A917, 167–177.
https://doi.org/10.1016/S0021-9673(01)00663-X
Appleby, P. G. 2001. Chronostratigraphic techniques in recent sediments. In Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods (Last, W. M. & Smol, J. P., eds), pp. 171–203. Kluwer Academic Publishers, Dordrecht.
Battarbee, R. W. & Bennion, H. 2011. Palaeolimnology and its developing role in assessing the history and extent of human impact on lake ecosystems. Journal of Paleolimnology, 45, 399–404.
https://doi.org/10.1007/s10933-010-9423-7
Battarbee, R. W., Morley, D., Bennion, H., Simpson, G. L., Hughes, M. & Bauere, V. 2011. A palaeolimnological meta-database for assessing the ecological status of lakes. Journal of Paleolimnology, 45, 405–414.
https://doi.org/10.1007/s10933-010-9417-5
Bennion, H., Davidson, T. A., Sayer, C. D., Simpson, G. L., Rose, N. L. & Sadler, J. P. 2015. Harnessing the potential of the multi-indicator palaeoecological approach: an assessment of the nature and causes of ecological change in a eutrophic shallow lake. Freshwater Biology, 60, 1423–1442.
https://doi.org/10.1111/fwb.12579
Bindler, R., Renberg, I. & Klaminder, J. 2008. Bridging the gap between ancient metal pollution and contemporary biogeochemistry. Journal of Paleolimnology, 40, 755–770.
https://doi.org/10.1007/s10933-008-9208-4
Boës, X., Rydberg, J., Martinez-Cortizas, A., Bindler, R. & Renberg, I. 2011. Evaluation of conservative lithogenic elements (Ti, Zr, Al, and Rb) to study anthropogenic element enrichments in lake sediments. Journal of Paleolimnology, 46, 75–87.
https://doi.org/10.1007/s10933-011-9515-z
Boyle, J. F. 2000. Rapid elemental analysis of sediment samples by isotope source XRF. Journal of Paleolimnology, 23, 213–221.
Boyle, J. F. 2001. Inorganic geochemical methods in palaeolimnology. In Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods (Last, W. M. & Smol, J. P., eds), pp. 83–141. Kluwer Academic Publishers, Dordrecht.
Boyle, J. F. 2004. A comparison of two methods for estimating the organic matter content of sediments. Journal of Paleolimnology, 31, 125–127.
https://doi.org/10.1023/B:JOPL.0000013354.67645.df
Boyle, J. F., Sayer, C. D., Hoare, D., Bennion, H., Heppel, K., Lambert, S. J., Appleby, P. G., Rose, N. L. & Davy, A. J. 2016. Toxic metal enrichment and boating intensity: sediment records of antifoulant copper in shallow lakes of eastern England. Journal of Paleolimnology, 55, 195–208.
https://doi.org/10.1007/s10933-015-9865-z
Davidson, T. A. & Jeppesen, E. 2013. The role of palaeolimnology in assessing eutrophication and its impact on lakes. Journal of Paleolimnology, 49, 391–410.
https://doi.org/10.1007/s10933-012-9651-0
Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L. & Hollong, C. S. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics, 35, 557–581.
https://doi.org/10.1146/annurev.ecolsys.35.021103.105711
Grimm, E. C. 1990. Tilia and Tilia graph PC spreadsheet and graphics software for pollen data. INQUA, Working Methods, Newsletter, 4, 5–7.
Heinsalu, A. & Alliksaar, T. 2009. Palaeolimnological assessment of the reference conditions and ecological status of lakes in Estonia − implications for the European Union Water Framework Directive. Estonian Journal of Earth Sciences, 58, 334–341.
https://doi.org/10.3176/earth.2009.4.11
Hobbs, W. O., Theissen, K. M., Hagen, S. M., Bruchu, C. W., Czeck, B. C., Hobbs, J. M. R. & Zimmer, K. D. 2014. Persistence of clear-water, shallow-lake ecosystems: the role of protected areas and stable aquatic food webs. Journal of Paleolimnology, 51, 405–420.
https://doi.org/10.1007/s10933-013-9763-1
Holmes, N., Langdon, C. J., Caseldine, C. J., Wastegard, S., Leng, M. J., Croudace, I. W. & Davies, S. M. 2016. Climatic variability during the last millennium in Western Iceland from lake sediment records. The Holocene, 26, 756–771.
https://doi.org/10.1177/0959683615618260
Jones, J. I., Collins, L. A., Naden, P. S. & Sear, D. A. 2012. The relationship between fine sediment and macrophytes in rivers. River Research and Applications, 28, 1006–1018.
https://doi.org/10.1002/rra.1486
Kangro, K., Laugaste, R., Nõges, P. & Ott, I. 2005. Long-term changes and seasonal development of phytoplankton in a strongly stratified, hypertrophic lake. Hydrobiologia, 547, 91–103.
https://doi.org/10.1007/s10750-005-4151-0
Leavitt, P. R. & Hodgson, D. A. 2001. Sedimentary pigments. In Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods (Last, W. M. & Smol, J. P., eds), pp. 295–325. Kluwer Academic Publishers, Dordrecht.
Leng, M. J. & Barker, P. A. 2006. A review of the oxygen isotope composition of lacustrine diatom silica for palaeoclimate reconstruction. Earth-Science Reviews, 75, 5–27.
https://doi.org/10.1016/j.earscirev.2005.10.001
Lillak, R. 2003. Eesti põllumajanduse ajalugu [History of Estonian Agriculture]. Eesti Põllumajandusülikool, Tartu, 240 pp.
Long, D. T., Parsons, M. J., Yansa, C. H., Yohn, S. S., McLean, C. E. & Vannier, R. G. 2010. Assessing the response of watersheds to catastrophic (logging) and possible secular (global temperature change) perturbations using sediment-chemical chronologies. Applied Geochemistry, 25, 143–158.
Mäemets, A. 1968. Eesti järved [Estonian lakes]. Valgus, Tallinn, 548 pp.
Mäemets, A. 1977. Eesti NSV järved ja nende kaitse [Lakes of the Estonian SSR and Their Protection]. Valgus, Tallinn, 263 pp.
Marzecová, A., Mikomägi, A., Koff, T. & Martma, T. 2011. Sedimentary geochemical response to human impact on Lake Nõmmejärv, Estonia. Estonian Journal of Ecology, 60, 54–69.
https://doi.org/10.3176/eco.2011.1.05
Marzecová, A., Avi, E., Mikomägi, A. & Koff, T. 2016. Ecological response of a shallow boreal lake to biomanipulation and catchment land-use: integrating paleolimnological evidence with information from limnological surveys and maps. Journal of Paleolimnology [accepted].
Mikomägi, A., Koff, T., Martma, T. & Marzecová, A. 2016. Biological and geochemical records of human-induced eutrophication in a small hard-water lake. Boreal Environment Research, 21, 513–527.
Moss, B. 2008. Water pollution by agriculture. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 659–666.
https://doi.org/10.1098/rstb.2007.2176
Ott, I. 2006 Eesti väikejärvede seire [Survey of Estonia’s Small Lakes]. Estonian Environment Information Centre, Estonia, http://seire.keskkonnainfo.ee/index.php?option= com_content&view=article&id=1891%3 [accessed 25 January 2016].
Ott, I. 2008. Eesti väikejärvede seire [Survey of Estonia’s Small Lakes]. Estonian Environment Information Centre, Estonia, http://seire.keskkonnainfo.ee/index.php?option= com_content&view=article&id=2116&Itemid=429 [accessed 2 February 2016].
Ott, I., Kõiv, T., Nõges, P., Kisand, A., Järvalt, A. & Kirt, E. 2005. General description of partly meromictic hypertrophic lake Verevi, its ecological status, changes during the past eight decades, and restoration problems. Hydrobiologia, 547, 1–20.
https://doi.org/10.1007/s10750-005-4138-x
Otsuki, A. & Wetzel, R. G. 1972. Coprecipitation of phosphate with carbonates in a marl lake. Limnology and Oceanography, 17, 763–767.
https://doi.org/10.4319/lo.1972.17.5.0763
Sayer, C. D., Burgess, A., Kari, K., Davidson, T. A., Peglar, S., Yang, H. & Rose, N. 2010. Long-term dynamics of submerged macrophytes and algae in a small and shallow, eutrophic lake: implications for the stability of macrophyte-dominance. Freshwater Biology, 55, 565–583.
https://doi.org/10.1111/j.1365-2427.2009.02353.x
Sayer, C. D., Bennion, H., Davidson, T., Burgess, A., Clarke, G., Hoare, D., Frings, P. & Hatton-Ellis, T. 2012. The application of palaeolimnology to evidence-based lake management and conservation: examples from UK lakes. Aquatic Conservation: Marine and Freshwater Ecosystems, 22, 165–180.
https://doi.org/10.1002/aqc.2221
Scheffer, M. & Carpenter, S. R. 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution, 18, 648–656.
https://doi.org/10.1016/j.tree.2003.09.002
Szeroczyńska, K. & Sarmaja-Korjonen, K. 2007. Atlas of Subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society, 84 pp.
Taylor, D., Dalton, D., Leira, M., Jordan, P., Chen, G., León-Vintró, L., Irvine, K., Bennion, H. & Nolan, T. 2006. Recent histories of six productive lakes in the Irish Ecoregion based on multiproxy palaeolimnological evidence. Hydrobiologia, 571, 237–259.
https://doi.org/10.1007/s10750-006-0243-8
Terasmaa, J., Mikomägi, A., Vandel, E., Vaasma, T., Vainu, M. & Heinsoo, M. 2014. Hydrotechnogenical influence of the oil shale mines to the water quality of the natural lakes in the Kurtna Lake District, Estonia. In 2nd International Conference – Water Resources and Wetlands, 11–13 September, 2014 Tulcea (Romania), Proceedings (Gâştescu, P., Marszelewski, W. & Bretcan, P., eds), pp. 181–188, http:// www.limnology.ro/water2014/ proceedings/24_Terasmaa.pdf [accessed 8 July 2016].
Thevenon, F. & Poté, J. 2012. Water pollution history of Switzerland recorded by sediments of the large and deep perialpine lakes Lucerne and Geneva. Water, Air, and Soil Pollution, 223, 6157–6169.
https://doi.org/10.1007/s11270-012-1347-6
Tropea, A. E., Paterson, A. M., Keller, W. & Smol, J. P. 2010. Sudbury sediments revisited: evaluating limnological recovery in a multiple-stressor environment. Water, Air, and Soil Pollution, 210, 317–333.
https://doi.org/10.1007/s11270-009-0255-x
Whitmore, T. J. & Riedinger-Whitmore, M. A. 2014. Topical advances and recent studies in paleolimnological research. Journal of Limnology, 73, 149–160.
https://doi.org/10.4081/jlimnol.2014.827
Yang, Y.-H., Zhou, F., Guo, H.-C., Sheng, H., Liu, H., Dao, X. & He, C.-J. 2010. Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods. Environmental Monitoring and Assessment, 170, 407–416.
https://doi.org/10.1007/s10661-009-1242-9