The Horoz pluton includes granitic and granodioritic rocks, with widespread mafic microgranular enclaves (MMEs). Petrochemically, the rocks of the pluton show calc-alkaline to shoshonitic and metaluminous to slightly peraluminous composition. The rocks also exhibit an enrichment in large ion lithophile elements, e.g. Rb, K, and depletions of high field strength elements such as Y, Lu, and Mg#, Ni, with a slightly concave-upward rare earth element pattern. Both granitic and granodioritic rocks exhibit geochemical characteristics of tonalite, trondhjemite and granodiorite assemblages, possibly developed by the partial melting of a thickened lower crust. The granitoids have high concentrations of Na2O (2.6–4.5 wt%), Sr (347–599 ppm), intermediate-high (La/Yb)N (8.2–18.1, mostly >11 ), Al2O3 (13.2–16.9 wt%, average 15.3 wt%), low MgO (0.2–1.4 wt%, average 0.84 wt%) and Co (0.7–10.3 ppm). The MMEs include higher Na2O (4.5–5.5 wt%), Sr (389–1149 ppm), Al2O3 (16.9–19.2 wt%, average 17.8 wt%), MgO (1.4–4.4 wt%, average 2.75 wt%) and Co (6.2–18.7 ppm) contents in comparison with that of their hosts. There is a lack of negative Eu anomalies, except a few samples. Both host rocks and MMEs have a low initial 87Sr/86Sr ratio (respectively 0.7046–0.7051 and 0.7047–0.7058), low eNd value (–1.8 to –0.2 and –0.6 to 0.7 at 50 Ma) and highly radiogenic 208Pb/204Pb ratios (39.43–39.47 and 39.39–39.54).
Whole-rock chemistry and isotopic data suggest that parent magmas of both MMEs and their hosts have derived from melts of the mixing between the lithospheric mantle and crustal end members, than fractional crystallization processes in crustal levels.
Akiman, O., Erler, A., Goncuoglu, M. C., Gulec, N., Geven, A., Tureli, T. K. & Kadioglu, Y. K. 1993. Geochemical characteristics of granitoids along the western margin of the Central Anatolian Crystalline Complex and their tectonic implications. Geological Journal, 28(3–4), 371–382.
http://dx.doi.org/10.1002/gj.3350280315
Alan, İ., Şahin, Ş., Keskin, H., Altun, İ., Bakırhan, B., Balcı, V., Böke, N., Saçlı, L., Pehlivan, Ş., Kop, A., Haniçili, N. & Çelik, Ö. F. 2007. The Geodynamic Evolution of the Intermediate Taurus Zone: Ereğli (Konya)-Ulukışla (Nigde)-Karsantı (Adana)-Namrun (İçel) Surroundings. MTA Report, Ankara.
Anderson, J. A. C., Price, R. C. & Fleming, P. D. 1998. Structural analysis of metasedimentary enclaves: implications for tectonic evolution and granite petrogenesis in the southern Lachlan Fold Belt, Australia. Geology, 26(2), 119–122.
http://dx.doi.org/10.1130/0091-7613(1998)026<0119:SAOMEI>2.3.CO;2
Arslan, M. & Aslan, Z. 2006. Mineralogy, petrography and whole-rock geochemistry of the Tertiary granitic intrusions in the Eastern Pontides, Turkey. Journal of Asian Earth Sciences, 27(2), 177–193.
http://dx.doi.org/10.1016/j.jseaes.2005.03.002
Atherton, M. P. & Petford, N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416), 144–146.
http://dx.doi.org/10.1038/362144a0
Aydogan. M. S., Coban, H., Bozcu, M. & Akinci, O. 2008. Geochemical and mantle-like isotopic (Nd, Sr) composition of the Baklan Granite from the Muratdagi Region (Banaz, Usak), western Turkey: implications for input of juvenile magmas in the source domains of western Anatolia Eocene-Miocene granites. Journal of Asian Earth Sciences, 33(3–4), 155–176.
http://dx.doi.org/10.1016/j.jseaes.2006.10.007
Azizi, H., Zanjefili-Beiranvand, M. & Asahara, Y. 2015. Zircon U–Pb ages and petrogenesis of a tonalite–trondhjemite–granodiorite (TTG) complex in the northern Sanandaj–Sirjan zone, northwest Iran: Evidence for Late Jurassic arc–continent collision. Lithos, 216–217, 178–195.
http://dx.doi.org/10.1016/j.lithos.2014.11.012
Bacon, C. R. 1986. Magmatic inclusions in silicic and intermediate volcanic rocks. Journal of Geophysical Research: Solid Earth, 91(B6), 6091–6112.
http://dx.doi.org/10.1029/JB091iB06p06091
Barbarin, B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3), 605–626.
http://dx.doi.org/10.1016/S0024-4937(98)00085-1
Barbarin, B. 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos, 80(1–4), 155–177.
http://dx.doi.org/10.1016/j.lithos.2004.05.010
Barbarin, B. & Didier, J. 1992. Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Transactions of the Royal Society of Edinburgh, Earth Sciences and Environmental, 83(1–2), 145–153.
Beard, J. S. & Lofgren, G. E. 1989. Effect of water on the composition of partial melts of greenstone and amphibolites at 1, 3 and 6.9 kb. Science, 244(4901), 195–197.
http://dx.doi.org/10.1126/science.244.4901.195
Beard, J. S. & Lofgren, G. E. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kb. Journal of Petrology, 32(2), 365–401.
http://dx.doi.org/10.1093/petrology/32.2.365
Bédard, J. 1990. Enclaves from the A-type granite of the Mégantic Complex, White Mountain magma series: clues to granite magmagenesis. Journal of Geophysical Research, 95(B11), 17797–17819.
http://dx.doi.org/10.1029/JB095iB11p17797
Bingol, E. 1974. 1/2,500,000 ölçekli Türkiye metamorfizma haritası ve bazı metamorfik kusakların jeotektonik evrimi üzerine tartısmalar [Discussion on the metamorphic map in a scale of 1:2,500,000 and geotectonic evolution of some metamorphic belts]. MTA Enstitusu Dergisi, 83, 178–184 [in Turkish].
Boynton, W. V. 1984. Cosmochemistry of the rare earth elements: meteorite studies. In Rare Earth Elements (Henderson, P., ed.), pp. 63–114. Elsevier, Amsterdam.
http://dx.doi.org/10.1016/b978-0-444-42148-7.50008-3
Boztug, D. 1998. Post-collisional central Anatolian alkaline plutonism, Turkey. Turkish Journal of Earth Sciences, 7(3), 145–165.
Boztug, D. 2000. S-I-A-type intrusive associations: geodynamic significance of synchronism between metamorphism and magmatism in Central Anatolia, Turkey. In Tectonics and Magmatism in Turkey and the Surrounding Area (Bozkurt, E., Winchester, J. A. & Piper, J. D. A., eds), Geological Society of London, Special Publications, 73, 441–458.
Boztug, D., Arehart, G. B., Platevoet, B., Harlavan, Y. & Bonin, B. 2007. High-K, calc-alkaline I-type granitoids from the composite Yozgat batholith generated in a post-collisional setting following continent-oceanic island arc collision in central Anatolia, Turkey. Mineralogy and Petrology, 91(3–4), 191–223.
http://dx.doi.org/10.1007/s00710-007-0196-2
Bussy, F. 1991. Enclaves of the Late Miocene Monte Capanne granite, Elba Island, Italy. In Enclaves and Granite Petrology (Didier, J. & Barbarin, B., eds), pp. 167–178. Elsevier.
Cantagrel, J. M., Didier, J. & Gourgaud, A. 1984. Magma mixing – origin of intermediate rocks and enclaves from volcanism to plutonism. Physics of the Earth and Planetary Interiors, 35(1–3), 63–76.
http://dx.doi.org/10.1016/0031-9201(84)90034-7
Çevikbaş, A., Boztuğ, D., Demirkol, C., Yılmaz, S., Akyıldız, M., Açlan, M., Demir, Ö. & Taş, R. 1995. Horoz plütonunun (Ulukışla-Niğde) oluşumunda dengelenmiş hibrid sistemin mineralojik ve jeokimyasal kanıtları [Mineralogical and geochemical evidences of the equilibrated hybrid system in the formation of the Horoz (Ulukısla-Niğde) pluton]. Geological Bulletin of Turkey, 10, 62–67 [in Turkish].
Chappell, B. W. 1996. Magma mixing and the production of compositional variation within granite suites: evidence from the granites of southeastern Australia. Journal of Petrology, 37(3), 449–470.
http://dx.doi.org/10.1093/petrology/37.3.449
Chappell, B. W. & White, A. J. R. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh, Earth and Environmental Science, 83(1–2), 1–26.
Chappell, B. W., White, A. J. R. & Wyborn, D. 1987. The importance of residual source material (restite) in granite petrogenesis. Journal of Petrology, 28(6),1111–1138.
http://dx.doi.org/10.1093/petrology/28.6.1111
Chen, B., Chen, Z. C. & Jahn, B. M. 2009. Origin of mafic enclaves from the Taihang Mesozoic orogen, north China craton. Lithos, 110(1–4), 343–358.
http://dx.doi.org/10.1016/j.lithos.2009.01.015
Chen, Y. D., Price, R. C. & White, A. J. R. 1989. Inclusions in three S-type granites from Southeastern Australia. Journal of Petrology, 30(5), 1181–1218.
http://dx.doi.org/10.1093/petrology/30.5.1181
Clark, M. & Robertson, A. 2002. The role of the Early Tertiary Ulukışla Basin, Southern Turkey, in suturing of the Mesozoic Tethys Ocean. Journal of the Geological Society, London, 159, 673–690.
http://dx.doi.org/10.1144/0016-764902-015
Clemens, J. D. & Wall, V. J. 1988. Controls on the mineralogy of S-type volcanic and plutonic rocks. Lithos, 21(1), 53–66.
http://dx.doi.org/10.1016/0024-4937(88)90005-9
Condie, K. C. 2005. TTGs and adakites: are they both slab melts? Lithos, 80(1–4), 33–44.
http://dx.doi.org/10.1016/j.lithos.2003.11.001
Dahlquist, J. A. 2002. Mafic microgranular enclaves: early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina. Journal of South American Earth Sciences, 15(6), 643–655.
http://dx.doi.org/10.1016/S0895-9811(02)00112-8
Davidson, J., MacPherson, C. & Turner, S. 2007a. Amphibole control in the differentiation of arc magmas. Geochimica et Cosmochimica Acta, 71(15), A204.
Davidson, J., Turner, S., Handley, H., Macpherson, C. & Dosseto, A. 2007b. Amphibole “sponge” in arc crust? Geology, 35(9), 787–790.
http://dx.doi.org/10.1130/G23637A.1
Davidson, J. P., Turner, S. P. & Macpherson, C. G. 2008. Water storage and amphibole control in arc magma differentiation. Geochimica et Cosmochimica Acta, 72(12), A201.
Debon, F. 1991. Comparative major element chemistry in various “microgranular enclave-plutonic host” pairs. In Enclaves and Granite Petrology (Didier, J. & Barbarin, B., eds), pp. 293–312. Elsevier, Amsterdam.
Debon, F. & Le Fort, P. 1983. A chemical–mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh, Earth and Environmental Sciences, 73(03), 135–149.
Didier, J. 1973. Granites and Their Enclaves. The Bearing of Enclaves on the Origin of Granites. Developments in Petrology 3. Elsevier Scientific Publishing Co., Amsterdam, xiv + 393 pp.
Didier, J. & Barbarin, B. 1991. Enclaves and Granite Petrology. Elsevier, Amsterdam, 625 pp.
Didier, J., Duthou, J. L. & Lameyre, J. 1982. Mantle and crustal granites: genetic classification of orogenic granites and the nature of their enclaves. Journal of Volcanology and Geothermal Research, 14(1–2), 125–132.
http://dx.doi.org/10.1016/0377-0273(82)90045-2
Dilek, Y., Garver, J. I. & Whitney, D. L. 1997. Extensional exhumation, uplift, and crustal cooling in a collision orogen and the geomorphic response, central Anatolia – Turkey. Geological Society of America Abstracts with Programs, 29, A474.
Dilek, Y., Thy, P., Hacker, B. & Grundvig, S. 1999. Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): implications for the Neotethyan ocean. Geological Society of America Bulletin, 111(8), 1192–1216.
http://dx.doi.org/10.1130/0016-7606(1999)111<1192:SAPOTO>2.3.CO;2
Dodge, F. C. W. & Kistler, R. W. 1990. Some additional observations on inclusions in the granitic rocks of the Sierra Nevada. Journal of Geophysical Research, 95(B11), 17841–17848.
http://dx.doi.org/10.1029/JB095iB11p17841
Donaire, T., Pascual, E., Pin, C. & Duthou, J. L. 2005. Microgranular enclaves as evidence of rapid cooling in granitoid rocks: the case of the Los Pedroches granodiorite, Iberian Massif, Spain. Contributions to Mineralogy and Petrology, 149(3), 247–265.
http://dx.doi.org/10.1029/JB095iB11p17841
Donnelly, T. W. & Rogers, J. J. W. 1980. Igneous series in island arc: the northeastern Caribbean compared with worldwide island-arc assemblages. Bulletin of Volcanology, 43(2), 347–382.
http://dx.doi.org/10.1007/BF02598038
Dorais, M. J., Whitney, J. A. & Roden, M. F. 1990. Origin of mafic enclaves in the Dinkey Creek Pluton Central Sierra Nevada Batholith, California. Journal of Petrology, 31(4), 853–881.
http://dx.doi.org/10.1093/petrology/31.4.853
Drummond, M. S. & Defant, M. J. 1990. A model for Trondhjemite-Tonalite-Dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research: Solid Earth, 95(B13), 21503–21521.
http://dx.doi.org/10.1029/JB095iB13p21503
Feeley, T. C., Wilson, L. F. & Underwood, S. J. 2008. Distribution and compositions of magmatic inclusions in the Mount Helen dome, Lassen Volcanic Center, California: insights into magma chamber processes. Lithos, 106(1–2), 173–189.
http://dx.doi.org/10.1016/j.lithos.2008.07.010
Ferré, E. C. & Leake, B. E. 2001. Geodynamic significance of early orogenic high-K crustal and mantle melts: example of the Corsica Batholith. Lithos, 59(1–2), 47–67.
http://dx.doi.org/10.1016/S0024-4937(01)00060-3
Foley, S., Tiepolo, M. & Vannucci, R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417, 837–840.
http://dx.doi.org/10.1038/nature00799
Fourcade, S. & Javoy, M. 1991. Sr–Nd–O isotopic features of mafic microgranular enclaves and host granitoids from the Pyrenees, France: evidence for their hybrid nature and inference on their origin. In Enclaves and Granite Petrology (Didier, J. & Barbarin, B., eds), pp. 345–366. Elsevier, Amsterdam.
Frost, T. P. & Mahood, G. A. 1987. Field, chemical, and physical constraints on mafic–felsic magma interaction in the Lamarck Granodiorite, Sierra Nevada, California. Geological Society of America Bulletin, 99, 272–291.
http://dx.doi.org/10.1130/0016-7606(1987)99<272:FCAPCO>2.0.CO;2
Geist, D., Howard, K. A. & Larson, P. 1995. The generation of oceanic rhyolites by crystal fractionation: the basalt-rhyolite association at Volcán Alcedo, Galápagos Archipelago. Journal of Petrology, 36(4), 965–982.
http://dx.doi.org/10.1093/petrology/36.4.965
Goncuoglu, M. C., Toprak, V., Kuscu, U., Erler, A. & Olgun, E. 1991. Geology of the Western Part of the Central Anatolian Massif, Part 1: Southern Section. Unpublished Report No. 2909, Turkish Petroleum Company Project [in Turkish].
Gorur, N., Oktay, F., Seymen, I. & Sengor, A. M. C. 1984. Paleotectonic evolution of the Tuzgolu basin complex, central Turkey: sedimentary record of a Neo-Tethyan closure In The Geological Evolution of the Eastern Mediterranean (Dixon, J. E. & Robertson, A. H. F., eds), Geological Society of London, Special Publication, 17, 455–466.
Gorur, N., Tuysuz, O. & Sengor, A. M. C. 1998. Tectonic evolution of the central Anatolian basins. International Geology Review, 40(9), 831–850.
http://dx.doi.org/10.1080/00206819809465241
Green, T. H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120(3–4), 347–359.
http://dx.doi.org/10.1016/0009-2541(94)00145-X
Harris, N. B. W., Pearce, J. A. & Tindle, A. G. 1986. Geochemical characteristics of collision zone magmatism. In Collision Tectonics (Coward, M. P. & Reis, A. C., eds), Geological Society of London, Special Publication, 19, 67–81.
Hart, S. R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309(5971), 753–757.
http://dx.doi.org/10.1038/309753a0
Hawkesworth, C. J. & Kemp, A. I. S. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226(3–4), 144–162.
http://dx.doi.org/10.1016/j.chemgeo.2005.09.018
He, Z.-Y., Xu, X.-S. & Niu, Y. 2010. Petrogenesis and tectonic significance of a Mesozoic granite–syenite–gabbro association from inland South China. Lithos, 119(3–4), 621–641.
http://dx.doi.org/10.1016/j.lithos.2010.08.016
Helz, R. T. 1976. Phase relations of basalts in their melting ranges at PH2O = 5 kb. Part II. Melt composition. Journal of Petrology, 17(2), 139–193.
http://dx.doi.org/10.1093/petrology/17.2.139
Hochstaedter, A. G., Gill, J. B. & Morris, J. D. 1990. Volcanism in the Sumisu Rift, II. Subduction and non-subduction related components. Earth and Planetary Science Letters, 100(1–3), 195–209.
http://dx.doi.org/10.1016/0012-821X(90)90185-Z
Hoffmann, J. E., Münker, C., Næraa, T., Rosing, M. T., Herwartz, D., Garbe-Schönberg, D. & Svahnberg, H. 2011. Mechanisms of Archean crust formation by high precision HFSE systematics on TTGs. Geochimica et Cosmochimica Acta, 75(15), 4157–4178.
http://dx.doi.org/10.1016/j.gca.2011.04.027
Huang, X.-L., Xu, Y.-G., Lan, J.-B., Yang, Q.-J. & Luo, Z.-Y. 2009. Neoproterozoic adakitic rocks from Mopanshan in the western Yangtze Craton: partial melts of a thickened lower crust. Lithos, 112(3–4), 367–381.
http://dx.doi.org/10.1016/j.lithos.2009.03.028
Icenhower, J. & London, D. 1996. Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt. American Mineralogist, 81(5–6), 719–734.
http://dx.doi.org/10.2138/am-1996-5-619
Ilbeyli, N., Pearce, J. A., Thirlwall, M. F. & Mitchell, J. G. 2004. Petrogenesis of collision-related plutonics in Central Anatolia, Turkey. Lithos, 72(3–4), 163–182.
http://dx.doi.org/10.1016/j.lithos.2003.10.001
Isik, F. & Kocak, K. 2005. Petrographical and geochemical characteristics of Ekecekdagi granitoid (Northeast of Aksaray). Geosound, 46, 83–105.
Johnston, A. D. & Wyllie, P. J. 1988. Interaction of granitic and basic magmas: experimental observations on contamination processes at 10 kbar with H2O. Contributions to Mineralogy and Petrology, 98(3), 352–362.
http://dx.doi.org/10.1007/BF00375185
Kadioglu, Y. K. & Dilek, Y. 2010. Structure and geochemistry of the adakitic Horoz granitoid, Bolkar Mountains, south-central Turkey, and its tectonomagmatic evolution. International Geology Review, 52(4–6), 505–535.
http://dx.doi.org/10.1080/09507110902954847
Kadıoglu, Y. K. & Güleç, N. 1996. Structural setting of gabbros in the Agaçören granitoid: implications from geological and geophysical (resistivity) data. TÜBITAK Turkish Journal of Earth Sciences, 5, 153–159 [in Turkish, with English abstract].
Kadioglu, Y. K., Dilek, Y., Gulec, N. & Foland, K. A. 2003. Tectonomagmatic evolution of bimodal plutons in the Central Anatolian Crystalline Complex, Turkey. The Journal of Geology, 111(6), 671–690.
http://dx.doi.org/10.1086/378484
Kadioglu, Y. K., Dilek, Y. & Foland, K. A. 2006. Slab break-off and syncollisional origin of the Late Cretaceous magmatism in the Central Anatolian crystalline complex, Turkey. Geological Society of America, Special Paper, 409, 381–415.
Kamber, B. S., Ewart, A., Collerson, K. D., Bruce, M. C. & McDonald, G. D. 2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archean crustal growth models. Contributions to Mineralogy and Petrology, 144(1), 38–56.
http://dx.doi.org/10.1007/s00410-002-0374-5
Kaygusuz, A. & Aydınçakır, E. 2009. Mineralogy, whole-rock and Sr–Nd isotope geochemistry of mafic microgranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NE Turkey: evidence of magma mixing, mingling and chemical equilibration. Chemie der Erde – Geochemistry, 69(3), 247–277.
Kaynak, M. & Akcakaya, M. 2006. The Project of the Aeromagnetic Map of Turkey. MTA report No. 10794.
Kemp, A. I. S. & Hawkesworth, C. J. 2003. Granitic perspectives on the generation and secular evolution of the continental crust. In Treatise on Geochemistry, Vol 3 (Rudnick, R. L., ed.), pp. 349–410. Elsevier, Oxford, UK.
http://dx.doi.org/10.1016/B0-08-043751-6/03027-9
Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., Paterson, B. A., Woodhead, J. D., Hergt, J. M., Gray, C. M. & Whitehouse, M. J. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814), 980–983.
http://dx.doi.org/10.1126/science.1136154
Klein, M., Stosch, H. G. & Seck, H. A. 1997. Partitioning of high field-strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: an experimental study. Chemical Geology, 138(3–4), 257–271.
http://dx.doi.org/10.1016/S0009-2541(97)00019-3
Klein, M., Stosch, H. G., Seck, H. A. & Shimizu, N. 2000. Experimental partitioning of high field strength and rare earth elements between clinopyroxene and garnet in andesitic to tonalitic systems. Geochimica et Cosmochimica Acta, 64(1), 99–115.
http://dx.doi.org/10.1016/S0016-7037(99)00178-7
Kocak, K. 1993. The Petrology and Geochemistry of the Ortaköy Area, Central Turkey. PhD Thesis, Glasgow University.
Kocak, K. 2006. Hybridization of mafic microgranular enclaves: mineral and whole-rock chemistry evidence from the Karamadazi Granitoid, Central Turkey. International Journal of Earth Sciences, 95(4), 587–607.
http://dx.doi.org/10.1007/s00531-006-0090-x
Kocak, K. 2008. Mineralogy, geochemistry, and Sr-Nd isotopes of the Cretaceous leucogranite from Karamadaz (Kayseri), central Turkey: implications for their sources and geological setting. Canadian Journal of Earth Sciences, 45(8), 949–968.
http://dx.doi.org/10.1139/E08-040
Kocak, K. & Leake, B. E. 1994. The petrology of the Ortaköy district and its ophiolite at the western edge of the Middle Anatolian Massif, Turkey. Journal of African Earth Sciences, 18(2), 163–174.
http://dx.doi.org/10.1016/0899-5362(94)90028-0
Kocak, K., Zedef, V. & Kansun, G. 2011. Magma mixing/ mingling in the Eocene Horoz (Nigde) granitoids, Central southern Turkey: evidence from mafic microgranular enclaves. Mineralogy and Petrology, 103(1–4), 149–167.
http://dx.doi.org/10.1007/s00710-011-0165-7
Kuscu, G. G., Kuşcu, R. M., Tosdal, T. D. & Ulrich, R. F. 2010. Magmatism in the southeastern Anatolian orogenic belt: transition from arc to post-collisional setting in an evolving orogeny. In Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform (Sosson, M., Kaymakcı, N., Stephenson, R. A., Bergerat, F. & Starostenko, V., eds), Geological Society of London, Special Publications, 340, 437–460.
http://dx.doi.org/10.1144/sp340.19
Langmuir, C., Vocke, R., Hanson, G. & Hart, S. 1978. A general mixing equation with applications to Icelandic basalts. Earth and Planetary Science Letters, 37(3), 380–392.
http://dx.doi.org/10.1016/0012-821X(78)90053-5
Lesher, C. E. 1990. Decoupling of chemical and isotopic exchange during magma mixing. Nature, 344(6263), 235–237.
http://dx.doi.org/10.1038/344235a0
Li, W.-X., Li, X.-H. & Li, Z.-X. 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research, 136(1), 51–66.
http://dx.doi.org/10.1016/j.precamres.2004.09.008
Li, X. H., Li, W. X., Wang, X. C., Li, Q. L., Liu, Y. & Tang, G. Q. 2009. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China: in situ zircon Hf-O isotopic constraints. Science in China Series D-Earth Sciences, 52(9), 1262–1278.
http://dx.doi.org/10.1007/s11430-009-0117-9
Liu, J. F., Chi, X. G., Zhao, Z., Hu, Z. C. & Chen, J. Q. 2013. Zircon U-Pb age and petrogenetic discussion on Jianshetun adakite in Balinyouqi, Inner Mongolia. Acta Petrologica Sinica, 29(3), 827–839.
López-Ruíz, J. & Cebriá, J. M. 1990. Geoquímica de los Processos Magmáticos. Rueda, Madrid, 168 pp.
Martin, H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14(9), 753–756.
http://dx.doi.org/10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2
Martin, H. 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3), 411–429.
http://dx.doi.org/10.1016/S0024-4937(98)00076-0
Martin, H. & Moyen, J. F. 2002. Secular changes in tonalite–trondhjemite–granodiorite composition as markers of the progressive cooling of Earth. Geology, 30(4), 319–322.
http://dx.doi.org/10.1130/0091-7613(2002)030<0319:SCITTG>2.0.CO;2
Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F. & Champion, D. 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1–2), 1–24.
http://dx.doi.org/10.1016/j.lithos.2004.04.048
Matsui, Y., Onuma, N., Nagasawa, H., Higuchi, H. & Banno, S. 1977. Crystal structure control in trace element partition between crystal and magma. Tectonics, 100, 315–324.
McCulloch, M. T. & Gamble, J. A. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102(3–4), 358–374.
http://dx.doi.org/10.1016/0012-821X(91)90029-H
Noyes, H. J., Frey, F. A. & Wones, D. R. 1983. A tale of two plutons: geochemical evidence bearing on the origin and differentiation of the Red Lake and Eagle Peak Plutons, Central Sierra Nevada, California. The Journal of Geology, 91(5), 487–509.
http://dx.doi.org/10.1086/628801
Oberc-Dziedzic, T., Pin, C. & Kryza, R. 2005. Early Palaeozoic crustal melting in an extensional setting: petrological and Sm-Nd evidence from the Izera granite-gneisses, Polish Sudetes. International Journal of Earth Sciences, 94(3), 354–368.
http://dx.doi.org/10.1007/s00531-005-0507-y
Orsini, J. B., Cocirta, C. & Zorpi, M. J. 1991. Genesis of mafic microgranular enclaves through differentiation of basic magmas, mingling and chemical exchanges with their host granitoid magmas. In Enclaves and Granite Petrology, Vol. 13 (Didier, J. & Barbarin, B., eds), pp. 445–464. Elsevier, Amsterdam.
Ozer, E., Koc, H. & Ozsayar, T. Y. 2004. Stratigraphical evidence for the depression of the northern margin of the Menderes-Tauride Block (Turkey) during the Late Cretaceous. Journal of Asian Earth Sciences, 22(5), 401–412.
http://dx.doi.org/10.1016/S1367-9120(03)00084-1
Parlak, O., Colakoglu, A., Donmez, C., Sayak, H., Yildirim, N., Turkel, A. & Odabasi, I. 2013a. Geochemistry and tectonic significance of ophiolites along the Izmir-Ankara-Erzincan Suture Zone in northeastern Anatolia. In Geological Development of Anatolia and the Easternmost Mediterranean Region (Robertson, A. H. F., Parlak, O. & Ünlügenç, U. C., eds), Geological Society of London, Special Publications, 372(1), 75–105.
http://dx.doi.org/10.1144/sp372.7
Parlak, O., Karaoğlan, F., Rızaoğlu, T., Klötzli, U., Koller, F. & Billor, Z. 2013b. U–Pb and 40Ar–39Ar geochronology of the ophiolites and granitoids from the Tauride belt: implications for the evolution of the Inner Tauride suture. Journal Geodynamics, 65, 22–37.
http://dx.doi.org/10.1016/j.jog.2012.06.012
Pearce, J. 1996. Sources and settings of granitic rocks. Episodes, 19(4), 120–125.
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956–983.
http://dx.doi.org/10.1093/petrology/25.4.956
Peccerillo, A. & Taylor, S. R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks of the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1), 63–81.
http://dx.doi.org/10.1007/BF00384745
Pe-Piper, G., Piper, D. J. W. & Matarangas, D. 2002. Regional implications of geochemistry and style of emplacement of Miocene I-type diorite and granite, Delos, Cyclades, Greece. Lithos, 60(1–2), 47–66.
http://dx.doi.org/10.1016/S0024-4937(01)00068-8
Petford, N. & Atherton, M. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6), 1491–1521.
http://dx.doi.org/10.1093/petrology/37.6.1491
Philpotts, J. A. & Schnetzler, C. C. 1970. Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. Geochimica et Cosmochimica Acta, 34(3), 307–322.
http://dx.doi.org/10.1016/0016-7037(70)90108-0
Pin, C., Binon, M., Belin, J. M., Barbarin, B. & Clemens, J. D. 1990. Origin of microgranular enclaves in granitoids: equivocal Sr-Nd evidence from Hercynian rocks in the Massif Central (France). Journal of Geophysical Research: Solid Earth, 95(B11), 17821–17828.
http://dx.doi.org/10.1029/JB095iB11p17821
Poli, G. & Tommasini, S. 1991. Model for the origin and significance of Microgranular enclaves in calc-alkaline granitoids. Journal of Petrology, 32(3), 657–666.
http://dx.doi.org/10.1093/petrology/32.3.657
Qian, Q. & Wang,Y. 1999. Geochemical characteristics of bimodal volcanic suites from different tectonic settings. Geology and Geochemistry, 27, 29–32.
Rapp, R. P. & Watson, E. B. 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4), 891–931.
http://dx.doi.org/10.1093/petrology/36.4.891
Rapp, R. P., Watson, E. B. & Miller, C. F. 1991. Partial melting of amphibolite eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research, 51(1–4), 1–25.
http://dx.doi.org/10.1016/0301-9268(91)90092-O
Rapp, R. P., Shimizu, N., Norman, M. D. & Applegate, G. S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology, 160(4), 335–356.
http://dx.doi.org/10.1016/S0009-2541(99)00106-0
Rudnick, R. L. & Fountain, D. M. 1995. Nature and composition of the continental crust – a lower crustal perspective. Reviews of Geophysics, 33(3), 267–309.
http://dx.doi.org/10.1029/95RG01302
Sen, C. & Dunn, T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 Gpa – implications for the origin of adakites. Contributions to Mineralogy and Petrology, 117(4), 394–409.
http://dx.doi.org/10.1007/BF00307273
Shand, S. J. 1943. Eruptive Rocks; Their Genesis, Composition, Classification, and their Relation to Ore Deposits, with a Chapter on Meteorites. Hafner Publishing Co., New York, 488 pp.
Shellnutt, J. G., Jahn, B. M. & Dostal, J. 2010. Elemental and Sr–Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China. Lithos, 119(1–2), 34–46.
http://dx.doi.org/10.1016/j.lithos.2010.07.011
Shu, L. S., Zuhu, W. B., Wang, B., Faure, M., Charvet, J. & Cluzel, D. 2005. The post-collision intracontinental rifting and olistostrorne on the southern slope of Bogda Mountains, Xinjiang. Acta Petrologica Sinica, 21(1), 25–36.
Silva, M. M. V. G., Neiva, A. M. R. & Whitehouse, M. J. 2000. Geochemistry of enclaves and host granites from the Nelas area, central Portugal. Lithos, 50(1–3),153–170.
http://dx.doi.org/10.1016/S0024-4937(99)00053-5
Smithies, R. H. 2000. The Archean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of cenozoic adakite. Earth and Planetary Science Letters, 182(1), 115– 125.
http://dx.doi.org/10.1016/S0012-821X(00)00236-3
Smithies, R. H. & Champion, D. C. 2000. The Archaean high-Mg diorite suite: links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archaean crustal growth. Journal of Petrology, 41(12), 1653–1671.
http://dx.doi.org/10.1093/petrology/41.12.1653
Smithies, R. H., Champion, D. C. & Cassidy, K. F. 2003. Formation of Earth’s early Archaean continental crust. Precambrian Research, 127(1–3), 89–101.
http://dx.doi.org/10.1016/S0301-9268(03)00182-7
Smithies, R. H., Champion D. C. & Van Kranendonk, M. J. 2009. Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth and Planetary Science Letters, 281(3–4), 298–306.
http://dx.doi.org/10.1016/j.epsl.2009.03.003
Springer, W. & Seck, H. A. 1997. Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas. Contributions to Mineralogy and Petrology, 127(1–2), 30–45.
http://dx.doi.org/10.1007/s004100050263
Spulber, S. D. & Rutherford, M. J. 1983. The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. Journal of Petrology, 24(1), 1–25
http://dx.doi.org/10.1093/petrology/24.1.1.
Srogi, L. & Lutz, T. 1990. Three-dimensional morphologies of metasedimentary and mafic enclaves from Ascutney Mountain, Vermont. Journal of Geophysical Research, 95(B11), 17829–17840.
http://dx.doi.org/10.1029/JB095iB11p17829
Sun, S.-S. 1980. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 297(1431), 409–445.
http://dx.doi.org/10.1098/rsta.1980.0224
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (Saunders, A. D. & Norry, M. J., eds), Geological Society of London, Special Publications, 42, 313–345.
http://dx.doi.org/10.1144/gsl.sp.1989.042.01.19
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust, its Composition and Evolution: an Examination of the Geochemical Record preserved in Sedimentary Rocks. Blackwell Scientific Publications, Oxford, 312 pp.
Taylor, S. R. & McLennan, S. M. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265.
http://dx.doi.org/10.1029/95RG00262
Tepper, J. H., Nelson, B. K., Bergantz, G. W. & Irving, A. J. 1993. Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contributions to Mineralogy and Petrology, 113(3), 333–351.
http://dx.doi.org/10.1007/BF00286926
Todt, W., Cliff, R. A., Hanser, A. & Hofmann, A. W. 1996. Evaluation of a 202Pb–205Pb double spike for high precision lead isotope analyses, In Earth Processes: Reading the Isotope Code (Basu, A. & Hart, S., eds), American Geophysical Union, Geophysical Monograph Series, 95, 429–437.
Tulloch, A. J. & Challis, G. A. 2000. Emplacement depths of Paleozoic–Mesozoic plutons from western New Zealand estimated by hornblende–Al geobarometry. New Zealand Journal of Geology and Geophysics, 43(4), 555–567.
http://dx.doi.org/10.1080/00288306.2000.9514908
Vernon, R. H. 1984. Microgranitoid enclaves in granites globules of hybrid magma quenched in a plutonic environment. Nature, 309(5967), 438–439.
http://dx.doi.org/10.1038/309438a0
Vernon, R. H. 1990. Crystallization and hybridism in microgranitoid enclave magmas: microstructural evidence. Journal of Geophysical Research, 95(B11), 17849–17859.
http://dx.doi.org/10.1029/JB095iB11p17849
Vorontsov, A. A., Yarmolyuk, V. V. & Baikin, D. N. 2004. Structure and composition of the Early Mesozoic volcanic series of the Tsagan–Khurtei Graben, western Transbaikalia: geological, geochemical, and isotopic data. Geochemistry International, 42(11), 1046–1061.
Waight, T. E., Wiebe, R. A., Krogstad, E. J. & Walker, R. J. 2001. Isotopic responses to basaltic injections into silicic magma chambers: a whole-rock and microsampling study of macrorhythmic units in the Pleasant Bay layered gabbro-diorite complex, Maine, USA. Contributions to Mineralogy and Petrology, 142(3), 323–335.
http://dx.doi.org/10.1007/s004100100292
Wang, Q., Xu, J. F., Jian, P., Bao, Z. W., Zhao, Z. H., Li, C. F., Xiong, X. L. & Ma, J. L. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, dexing, South China: implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1), 119–144.
http://dx.doi.org/10.1093/petrology/egi070
West, D. P, Coish, R. A. & Tomascak, P. B. 2004. Tectonic setting and regional correlation of Ordovician metavolcanic rocks of the Casco Bay Group, Maine: evidence from trace element and isotope geochemistry. Geological Magazine, 141(02), 125–140.
http://dx.doi.org/10.1017/S0016756803008562
White, A. J. R., Chappell, B. W. & Wyborn, D. 1999. Application of the restite model to the Deddick Granodiorite and its enclaves – a reinterpretation of the observations and data of Maas et al. (1997). Journal of Petrology, 40(3), 413–421.
http://dx.doi.org/10.1093/petroj/40.3.413
Whitney, D., Lefebvre, C., Thomson, S. N. & Teyssier, C. P. 2015. Uplift and exhumation in central Anatolia: new results from low-temperature chronometry in a deeply incised granite in the Central Tauride Mountains, Turkey. In AGU Fall Meeting, San Francisco, 14–18 December; Mantle, Crust, and Surface Dynamics in the Mediterranean System I Posters.
Wiebe, R. A., Smith, D., Sturm, M., King, E. M. & Seckler, M. S. 1997. Enclaves in the Cadillac Mountain granite (coastal Maine): samples of hybrid magma from the base of the chamber. Journal of Petrology, 38(3), 393–423.
http://dx.doi.org/10.1093/petroj/38.3.393
Wilson, M. 1989. Igneous Petrogenesis. A Global Tectonic Approach. Unwin Hyman, London, 466 pp.
http://dx.doi.org/10.1007/978-1-4020-6788-4
Winther, K. T. & Newton, R. C. 1991. Experimental melting of hydrous low-K tholeiite: evidence on the origin of Archean craton. Bulletin of the Geological Society of Denmark, 39(2), 213–228.
Wolf, M. B. & Wyllie, P. J. 1994. Dehydration-melting of solid amphibolite at 10 kbar: textural development, liquid interconnectivity and applications to the segregation of magmas. Contributions to Mineralogy and Petrology, 44(3), 151–179.
Zamora, D. 2000. Fusion de la croûte océanique subductée: approche expérimentale et géochimique. Université Thesis, Université Blaise Pascal, Clermont-Ferrand, 314 pp.
Zhu, J. C., Wang, R. C. & Xie, L. 2009. Magma mingling origin of mafic microgranular enclaves in Guposhan granite pluton, South China. Geochimica et Cosmochimica Acta, 73(13), A1531.