ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Early Mesoproterozoic magmatism in northwestern Lithuania: a new U–Pb zircon dating; pp. 189–198
PDF | doi: 10.3176/earth.2015.26

Authors
Irma Vejelyte, Svetlana Bogdanova, Grazina Skridlaite
Abstract

We present new geochronological evidence of latest Palaeoproterozoic–earliest Mesoproterozoic magmatism in the Telsiai Deformation Zone, NW Lithuania. Employing the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at the University of Tasmania, Australia, we demonstrate that a granodiorite, which had previously been considered to belong to the 1850–1820 Ma Kursiai charnockitic batholith, has a U–Pb zircon age of ca 1.62 Ga. The weighted mean Pb207/Pb206 age obtained from eight concordant zircon grains is 1625 ± 6 Ma (MSWD = 0.6), while the upper-intercept concordia age is 1619 ± 27 Ma (MSWD = 0.56). Like similar ages of granitoids from several small intrusions in Estonia, this once more indicates extensive melting of the crust at that time. We suggest that both the 1.62 Ga magmatism and the emplacement and crystallization of the large Riga anorthosite–mangerite–charnockite–rapakivi batholith in Latvia and western Estonia at 1580 Ma were far-field feedback effects of the formation of the new Palaeoproterozoic continental crust during the Gothian orogeny at the present SW margin of the East European Craton.

References

Åhäll, K. I., Connely, J. N. & Brewer, T. S. 2000. Episodic rapakivi magmatism due to distal orogenesis?: Correlation of 1.69–1.50 Ga orogenic and inboard, “anorogenic” events in the Baltic Shield. Geology, 28, 823–826.
http://dx.doi.org/10.1130/0091-7613(2000)028<0823:ERMDTD>2.3.CO;2

Amelin, Y. V., Larin, A. M. & Tucker, R. D. 1997. Chronology of multiphase emplacement of the Salmi rapakivi granite-anorthosite complex, Baltic Shield: implications for magmatic evolution. Contributions to Mineralogy and Petrology, 127, 353–368.
http://dx.doi.org/10.1007/s004100050285

Andersson, J., Söderlund, U., Cornell, D., Johansson, L. & Möller, C. 2001. Reply to discussion on ‘Sveconorwegian (-Grenvillian) deformation, metamorphism and leucosome formation in SW Sweden, SW Baltic Shield: constraints from a Mesoproterozoic granite intrusion’. Precambrian Research, 106, 333–337.
http://dx.doi.org/10.1016/S0301-9268(00)00137-6

Andersson, U. B., Neymark, L. A. & Billström, K. 2002. Petrogenesis of Mesoproterozoic (Subjotnian) rapakivi complexes of central Sweden: implications from U–Pb zircon ages, Nd, Sr and Pb isotopes. Transactions of the Royal Society of Edinburgh, Earth Sciences, 92, 201–228.

Bogatikov, O. A. & Birkis, A. P. 1973. Dokembrij Zapadnoj Latvii [Precambrian Magmatism in Western Latvia]. Nauka, Moscow, 138 pp. [in Russian].

Bogdanova, S. V. 1993. Segments of the East European Craton In EUROPROBE in Jablonna 1991 (Gee, D. G. & Beckholmen, M., eds), pp. 33–38. European Science Foundation – Polish Academy of Sciences.

Bogdanova, S., Gorbatschev, R., Grad, M., Guterch, A., Janik, T., Kozlovskaya, E., Motuza, G., Skridlaite, G., Starostenko, V. & Taran, L. 2006. EUROBRIDGE: New insight into the geodynamic evolution of the East European Craton In European Lithosphere Dynamics (Gee, D. G. & Stephenson, R. A., eds), Geological Society, London, Memoirs, 32, 599–628.
http://dx.doi.org/10.1144/gsl.mem.2006.032.01.36

Bogdanova, S., Gorbatschev, R., Skridlaite, G., Soesoo, A., Taran, L. & Kurlovich, D. 2015. Trans-Baltic Palaeo­proterozoic correlations towards the reconstruction of supercontinent Columbia/Nuna. Precambrian Research, 259, 5–33.
http://dx.doi.org/10.1016/j.precamres.2014.11.023

Claesson, S., Bogdanova, S. V., Bibikova, E. V. & Gorbatschev, R. 2001. Isotopic evidence of Palaeo­proterozoic accretion in the basement of the East European Craton. Tectonophysics, 339, 1–18.
http://dx.doi.org/10.1016/S0040-1951(01)00031-2

Haapala, I. & Rämö, T. 1992. Tectonic setting and origin of the Proterozoic rapakivi granites of Southeastern Fennoscandia. Transactions of the Royal Society of Edinburgh, Earth Sciences, 83, 165–171.
http://dx.doi.org/10.1017/S0263593300007859

Halpin, J. A., Jensen, T., McGoldrick, P., Meffre, S., Berry, R. F., Everard, J. L., Calver, C. R., Thompson, J., Goemann, K. & Whittaker, J. M. 2014. Authigenic monazite and detrital zircon dating from the Proterozoic Rocky Cape Group, Tasmania: links to the Belt-Purcell Supergroup, North America. Precambrian Research, 250, 50–67.
http://dx.doi.org/10.1016/j.precamres.2014.05.025

Kirs, J., Haapala, I. & Rämö, O. T. 2004. Anorogenic magmatic rocks in the Estonian crystalline basement. Proceedings of the Estonian Academy of Sciences, Geology, 53, 210–225.

Korja, A. & Heikkinen, P. 1995. Proterozoic extensional tectonics of the central Fennoscandian shield: results from the Baltic–Bothnian echoes from the lithosphere experiment. Tectonics, 14, 504–517.
http://dx.doi.org/10.1029/94TC02905

Ludwig, K. R. 2012. Isoplot 3.75. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 5, 10.1016/S0016-7037(98)00059-3.

Motuza, G., Čečys, A., Kotov, A. B. & Salnikova, E. B. 2006. The Zemaičiu Naumiestis granitoids: new evidences for Mesoproterozoic magmatism in western Lithuania. GFF, 128, 209–272.
http://dx.doi.org/10.1080/11035890601283243

Motuza, G., Motuza, V., Salnikova, E. & Kotov, A. 2008. Extensive charnockitic-granitic magmatism in the crystalline crust of West Lithuania, Geologija (Vilnius), 61, 1–16.
http://dx.doi.org/10.2478/v10056-008-0001-x

Puura, V. & Floden, T. 1999. Rapakivi-granite-anorthosite magmatism – a way of thinning and stabilisation of the Svecofennian crust, Baltic Sea Basin. Tectonophysics, 305, 75–92.
http://dx.doi.org/10.1016/S0040-1951(99)00019-0

Rämö, O. T., Huhma, H. & Kirs, J. 1996. Radiogenic isotopes of the Estonian and Latvian rapakivi granite suites: new data from the concealed Precambrian of the East European Craton. Precambrian Research, 79, 209–226.
http://dx.doi.org/10.1016/S0301-9268(95)00083-6

Skridlaite, G., Wiszniewska, J. & Duchesne, J. C. 2003. Ferro-potassic A-type granites and related rocks in NE Poland and S Lithuania: west of the East European Craton. Precambrian Research, 124, 305–326.
http://dx.doi.org/10.1016/S0301-9268(03)00090-1

Skridlaitė, G., Whitehouse, M. & Rimša, A. 2007. Evidence for a pulse of 1.45 Ga anorthosite–mangerite–charnockite–granite (AMCG) plutonism in Lithuania: implications for the Mesoproterozoic evolution of the East European Craton. Terra Nova, 19, 294–301.
http://dx.doi.org/10.1111/j.1365-3121.2007.00748.x

Skridlaite, G., Bogdanova, S., Taran, L. & Baginski, B. 2014. Recurrent high grade metamorphism recording a 300 Ma long Proterozoic crustal evolution in the western part of the East European Craton. Gondwana Research, 25, 649–667.
http://dx.doi.org/10.1016/j.gr.2013.04.011

Söderlund, U. 2006. U–Pb baddeleyite ages of Meso- and Neoproterozoic dykes and sills in central Fennoscandia: a review. In Dyke Swarms – Time Markers of Crustal Evolution (Hanski, E., Mertanen, S., Rämö, T. & Vuollo, J., eds), pp. 75–84. Balkema, London.
http://dx.doi.org/10.1201/NOE0415398992.ch5

Stacey, J. S. & Kramers, I. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26, 207–221.
http://dx.doi.org/10.1016/0012-821X(75)90088-6

Stephens, M. B., Ripa, M., Lundström, L., Persson, L., Bergman, T., Ahl, M., Wahlgren, C. H., Persson, P. O. & Wickström, L. 2009. Synthesis of the Bedrock Geology in the Bergslagen Region, Fennoscandian Shield, South-Central Sweden. SGU, Sweden, 259 pp.

Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In Magmatism in the Ocean Basins (Saunders, A. D. & Norry, M. J., eds), Geological Society of London, 42, 313–345.

Vejelyte, I., Bogdanova, S., Yi, K. & Cho, M. 2012. The Paleo- to Mesoproterozoic tectonic and magmatic evolution of the Telsiai and Druksiai-Polotsk deformation zones in the crystalline basement of Lithuania, East European Craton, reconstructed by U–Pb zircon geo­chronology. In 34th International Geological Congress, Brisbaine, Australia, Abstract 3163.

Wikström, A. & Andersson, U. B. 2004. Geological features of the Småland–Värmland belt along the Svecofennian margin, part 1: from the Loftahammar to the Tiveden-Askersund areas. In The Trans-Scandinavian Igneous Belt (TIB) in Sweden: a Review of its Character and Evolution (Högdahl, K., Andersson, U. B. & Eklund, O., eds), Geological Survey of Finland, Espoo, Finland. Special Paper, 37, 22–38.

Wiszniewska, J., Claesson, S., Stein, H., Vander Auwera, J. & Duchesne, J. C. 2002. The north-eastern Polish anorthosite massifs: petrological, geochemical and isotopic evidence for a crustal derivation. Terra Nova, 14, 451–460.
http://dx.doi.org/10.1046/j.1365-3121.2002.00443.x

 

Back to Issue