The objectives of this study were (1) to review current recommendations on storage reservoirs and classify their quality using experimental data of sandstones of the Deimena Formation of Cambrian Series 3, (2) to determine how the possible CO2 geological storage (CGS) in the Deimena Formation sandstones affects their properties and reservoir quality and (3) to apply the proposed classification to the storage reservoirs and their changes during CGS in the Baltic Basin.
The new classification of the reservoir quality of rocks for CGS in terms of gas permeability and porosity was proposed for the sandstones of the Deimena Formation covered by Lower Ordovician clayey and carbonate cap rocks in the Baltic sedimentary basin. Based on permeability the sandstones were divided into four groups showing their practical usability for CGS (‘very appropriate’, ‘appropriate’, ‘cautionary’ and ‘not appropriate’). According to porosity, eight reservoir quality classes were distinguished within these groups.
The petrophysical, geochemical and mineralogical parameters of the sandstones from the onshore South Kandava and offshore E6 structures in Latvia and the E7 structure in Lithuania were studied before and after the CO2 injection-like alteration experiment. The greatest changes in the composition and properties were determined in the carbonate-cemented sandstones from the uppermost part of the South Kandava onshore structure. Partial dissolution of pore-filling carbonate cement (ankerite and calcite) and displacement of clay cement blocking pores caused significant increase in the effective porosity of the samples, drastic increase in their permeability and decrease in grain and bulk density, P- and S-wave velocity, and weight of the dry samples. As a result of these alterations, carbonate-cemented sandstones of initially ‘very low’ reservoir quality (class VIII), ‘not appropriate’ for CGS, acquired an ‘appropriate’ for CGS ‘moderate’ quality (class IV) or ‘very appropriate’ ‘high-2’ reservoir quality (class II). The permeability of the clay-cemented sandstones of ‘very low’ reservoir quality class VIII from the lower part of the E7 reservoir was not improved. Only minor changes during the alteration experiment in the offshore pure quartz sandstones from the E6 and E7 structures caused slight variations in their properties. The initial reservoir quality of these sandstones (‘high-1’ and ‘good’, classes I and III, respectively, in the E6 structure, and ‘cautionary-2’, class VI in the E7 structure) was mainly preserved.
The reservoir sandstones of the Deimena Formation in the South Kandava structure had an average porosity of 21%, identical to the porosity of rocks in the E6 structure, but twice higher average permeability, 300 and 150 mD, respectively. The estimated good reservoir quality of these sandstones was assessed as ‘appropriate’ for CGS. The reservoir quality of the sandstones from the E7 offshore structure, estimated as ‘cautionary-2’ (average porosity 12% and permeability 40 mD), was lowest among the studied structures and was assessed as ‘cautionary’ for CGS.
Petrophysical alteration of sandstones induced by laboratory-simulated CGS was studied for the first time in the Baltic Basin. The obtained results are important for understanding the physical processes that may occur during CO2 storage in the Baltic onshore and offshore structures.
Andrushenko, J., Vzosek, R., Krochka, V., Hubldikov, A., Lobanov, V., Novikov, E., Hafenshtain, K., Tsimashevskij, K. & Labus, R. 1985. Geological Report of the Well E6-1/84. Unpublished exploration report, Latvian Environmental, Geology and Meteorology Centre (LEGMC), Latvia, Riga [in Russian].
[API] American Petroleum Institute. 1998. Recommended Practices for Core Analysis. Second Edition, Recommended Practice, 40, Exploration and Production Department, 236 pp.
Arts, R., Chadwick, A., Eiken, O., Thibeau, S. & Nooner, S. 2008. Ten years of experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First break, 26, 65–72.
Babuke, B., Vzosek, R., Grachev, A., Naidenov, V., Krochka, V., Markov, P., Novikov, E., Tsimashevskij, L. & Labus, R. 1983. Geological Report of the Well E7-1/82. Unpublished exploration report, Latvian Environmental, Geology and Meteorology Centre (LEGMC), Latvia, Riga [in Russian].
Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N. P. & Mathiassen, O. M. 2007. CO2 storage capacity estimation: methodology and gaps. International Journal of Greenhouse Gas Control, 1, 430–443.
http://dx.doi.org/10.1016/S1750-5836(07)00086-2
Bemer, E. & Lombard, J. M. 2010. From injectivity to integrity studies of CO2 geological storage. Oil & Gas Science and Technology – Rev. IFP, 65, 445–459.
Bertier, P., Swennen, R., Laenen, B., Lagrou, D. & Dreesen, R. 2006. Experimental identification of CO2–water–rock interactions caused by sequestration of CO2 in Westphalian and Buntsandstein sandstones of the Campine Basin (NE-Belgium). Journal of Geochemical Exploration, 89, 10–14.
http://dx.doi.org/10.1016/j.gexplo.2005.11.005
Carroll, S. A., McNab, W. W. & Torres, S. C. 2011. Experimental study of cement–sandstone/shale–brine–CO2 interactions. Geochemical Transactions, 12:9.
http://dx.doi.org/10.1186/1467-4866-12-9
Carroll, S. A., McNab, W. W., Dai, Z. & Torres, S. C. 2013. Reactivity of Mt. Simon sandstone and the Eau Claire shale under CO2 storage conditions. Environmental Science and Technology, 47, 252–261.
http://dx.doi.org/10.1021/es301269k
Chadwick, A., Arts, R., Bernstone, C., May, F., Thibeau, S. & Zweigel, P. 2006. Best practice for the storage of CO2 in saline aquifers. Keyworth, Nottingham. British Geological Survey Occasional Publication, 14, 1–277.
Čyžienė, J., Molenaar, N. & Šliaupa, S. 2006. Clay-induced pressure solution as a Si source for quartz cement in sandstones of the Cambrian Deimena Group. Geologija (Vilnius), 53, 8–21.
Czernichowski-Lauriol, I., Rochelle, C., Gaus, I., Azaroual, M., Pearce, J. & Durst, P. 2006. Geochemical interactions between CO2, pore-waters and reservoir rocks: lessons learned from laboratory experiments, field studies and computer simulations. In Advances in the Geological Storage of Carbon Dioxide: International Approaches to Reduce Anthropogenic Greenhouse Gas Emissions (Lombardi, S., Altunina, S. E. & Beaubien, S. E., eds), pp. 157–174. Springer, Dordrecht, Netherlands.
http://dx.doi.org/10.1007/1-4020-4471-2_14
Dmitriev, E., Freimanis, A., Tratsevski, G. & Pavlovski, A. 1973. Geological Report of Wells 91 and 92 on the Dobele Structure. Unpublished exploration report, Latvian Environmental, Geology and Meteorology Centre (LEGMC), Latvia, Riga [in Russian].
Egermann, P., Bemer, E. & Zinszner, B. 2006. An experimental investigation of the rock properties evolution associated to different levels of CO2 injection like alteration processes. In Proceedings of the International Symposium of the Society of Core Analysts, September 12–16, 2006, Trondheim, Norway, paper SCA 2006-34.
Gilfillan, S. M. V., Ballentine, C. J., Holland, G., Blagburn, D., Lollar, B. S., Stevens, S., Schoell, M. & Cassidy, M. 2008. The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochimica et Cosmochimica Acta, 72, 1174–1198.
http://dx.doi.org/10.1016/j.gca.2007.10.009
Gilfillan, S. M. V., Lollar, B. S., Holland, G., Blagburn, D., Stevens, S., Schoell, M., Cassidy, M., Ding, Z., Zhou, Z., Lacrampe-Couloume, G. & Ballentine, C. J. 2009. Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature, 458, 614–618.
http://dx.doi.org/10.1038/nature07852
Gorbatschev, R. & Bogdanova, S. 1993. Frontiers in the Baltic References Shield. Precambrian Research, 64, 3–21.
http://dx.doi.org/10.1016/0301-9268(93)90066-B
Grigg, R. B. & Svec, R. K. 2003. Co-injected CO2–brine interactions with Indiana Limestone. In Society of Core Analysts Symposium, September 21–24, 2003, Pau, France, paper SCA 2003-19.
Halland, E. K., Johansen, W. T. & Riss, F. 2011. CO2 Storage Atlas – Norwegian North Sea. The Norwegian Petroleum Directorate, http://www.npd.no/Global/Norsk/3-Publikasjoner/ Rapporter/PDF/CO2-ATLAS-lav.pdf [accessed 20 April 2015].
Halland, E. K., Johansen, W. T. & Riss, F. 2013. CO2 Storage Atlas – Norwegian Sea. The Norwegian Petroleum Directorate, http://www.npd.no/Global/Norsk/3-Publikasjoner/ Rapporter/CO2-ATLAS-Norwegian-sea-2012.pdf [accessed 20 April 2015].
Hitchon, B. (ed.). 1996. Aquifer Disposal of Carbon Dioxide. Geoscience Publishing Ltd., Sherwood Park, Alberta, Canada, 165 pp.
IPCC. 2014. IPCC Special Report. Climate Change: Mitigation of Climate Change. Prepared by Working Group III Contribution of the Intergovernmental Panel on Climate Change to AR5, 1435 pp.
Izgec, O., Demiral, B., Bertin, H. & Akin, S. 2008. CO2 injection into saline carbonate aquifer formations. Laboratory investigation. Transport in Porous Media, 72, 1–24.
http://dx.doi.org/10.1007/s11242-007-9132-5
Kamath, J., Nakagawa, F. M., Boyer, R. E. & Edwards, K. A. 1998. Laboratory investigation of injectivity losses during WAG in West Texas Dolomites. In Permian Basin Oil and Gas Conference, March 23–26, 1998, Midland, TX, paper SPE 39791.
Kaszuba, J. P. & Janecky, D. R. 2009. Geochemical impacts of sequestering carbon dioxide in brine formations. In Carbon Sequestration and Its Role in the Global Carbon Cycle (Sundquist, E. & McPherson, B., eds), Geophysical Monograph, 183, 239–248.
http://dx.doi.org/10.1029/2006GM000353
Khanin, A. A. 1965. Osnovnye ucheniya o porodakh-kollektorakh nefti i gaza [Main Studies of Oil and Gas Reservoir Rocks]. Publishing House Nedra, Moscow, 362 pp. [in Russian].
Khanin, A. A. 1969. Porody-kollektory nefti i gaza i ikh izuchenie [Oil and Gas Reservoir Rocks and Their Study]. Publishing House Nedra, Moscow, 368 pp. [in Russian].
Kilda, L. & Friis, H. 2002. The key factors controlling reservoir quality of the Middle Cambrian Deimena Group sandstone in West Lithuania. Bulletin of the Geological Society of Denmark, 49, 25–39.
Krumbein, W. C. 1934. Size frequency distributions of sediments. Journal of Sedimentary Petrology, 4, 65–77.
http://dx.doi.org/10.1306/d4268eb9-2b26-11d7-8648000102c1865d
Lashkova, L. N. 1979. Litologiya, fatsii, i kollektorskie svojstva kembrijskikh otlozhenij Yuzhnoj Pribaltiki [Lithology, Facies and Reservoir Properties of Cambrian Deposits of the South Baltic Region]. Publishing House Nedra, Moscow, 102 pp. [in Russian].
Liu, F., Lu, P., Zhu, C. & Xiao, Y. 2011. Coupled reactive flow and transport modelling of CO2 sequestration in the Mt. Simon sandstone formation. Midwest U.S.A. International Journal of Greenhouse Gas Control, 5, 294–307.
http://dx.doi.org/10.1016/j.ijggc.2010.08.008
Liu, F., Lu, P., Griffith, C., Hedges, S. W., Soong, Y., Hellevang, H. & Zhu, C. 2012. CO2–brine–caprock interaction: reactivity experiments on Eau Claire shale and a review of relevant literature. International Journal of Greenhouse Gas Control, 7, 153–167.
http://dx.doi.org/10.1016/j.ijggc.2012.01.012
Mavko, G., Mukerji, T. & Dvorkin, J. 2003. Rock Physics Handbook – Tools for Seismic Analysis in Porous Media. Cambridge University Press, 329 pp.
Metz, B., Davidson, O., de Coninck, H. C., Loos, M. & Meyer, L. A. (eds). 2005. IPCC Special Report. Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 431 pp.
Nguyen, P., Fadaei, H. & Sinton, D. 2013. Microfluidics underground: a micro-core method for pore scale analysis of supercritical CO2 reactive transport in saline aquifers. Journal of Fluids Engineering, 135(2), 7 pp.
Pawar, R. J., Warpinski, N. R., Lorenz, J. C., Benson, R. D., Grigg, R. B., Stubbs, B. A., Stauffer, P. H., Krumhansl, J. P. & Cooper, S. P. 2006. Overview of a CO2 sequestration field test in the West Pearl Queen reservoir, New Mexico. The American Association of Petroleum Geologists/Division of Environmental Geosciences, Environmental Geosciences, 13, 163–180.
http://dx.doi.org/10.1306/eg.10290505013
Peng, S., Babcock, L. E. & Cooper, R. A. 2012. Chapter 19. The Cambrian Period. In The Geologic Time Scale 2012 (Gradstein, F., Ogg, J., Schmitz, M. & Ogg, G., eds), pp. 437–488. Elsevier.
http://dx.doi.org/10.1016/B978-0-444-59425-9.00019-6
Poprawa, P., Šliaupa, S., Stephenson, R. & Lazauskiene, J. 1999. Late Vendian–Early Palaeozoic tectonic evolution of the Baltic basin: regional tectonic implications from subsidence analysis. Tectonophysics, 314, 218–239.
http://dx.doi.org/10.1016/S0040-1951(99)00245-0
Prieditis, J., Wolle, C. R. & Notz, P. K. 1991. A laboratory and field injectivity study: CO2 WAG in the San Andres formation of West Texas. In Annual Technical Conference and Exhibition, October 6–9, 1991, Dallas, TX, paper SPE 22653.
http://dx.doi.org/10.2118/22653-MS
Rochelle, C. A., Czernichowski-Lauriol, I. & Milodowski, A. E. 2004. The impact of chemical reactions on CO2 storage in geological formations: a brief review. Geological Society, London, Special Publications, 233, 87–106.
http://dx.doi.org/10.1144/GSL.SP.2004.233.01.07
Ross, G. D., Todd, A. C., Tweedie, J. A. & Will, A. G. 1982. The dissolution effects of CO2–brine systems on the permeability of U.K. and North Sea calcareous sandstones. In DOE Symposium on Enhanced Oil Recovery, April 4–7, 1982, Society of Petroleum Engineers, Tulsa, OK, paper SPE 10685.
http://dx.doi.org/10.2118/10685-MS
Schön, J. H. 1996. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics. Pergamon, Oxford, UK, 583 pp.
Shogenov, K., Shogenova, A. & Vizika-Kavvadias, O. 2013a. Petrophysical properties and capacity of prospective structures for geological storage of CO2 onshore and offshore Baltic. Energy Procedia, 37, 5036–5045.
http://dx.doi.org/10.1016/j.egypro.2013.06.417
Shogenov, K., Shogenova, A. & Vizika-Kavvadias, O. 2013b. Potential structures for CO2 geological storage in the Baltic Sea: case study offshore Latvia. Bulletin of the Geological Society of Finland, 85, 65–81.
Shogenova, A., Kirsimäe, K., Bitjukova, L., Jõeleht, A. & Mens, K. 2001a. Physical properties and composition of cemented siliciclastic Cambrian rocks, Estonia. In Research in Petroleum Technology (Fabricius, I. L., ed.), pp. 123–149. Nordisk Energiforskning, Ås, Norway.
Shogenova, A., Šliaupa, S., Rasteniene, V., Jõeleht, A., Kirsimäe, K., Bitjukova, L., Lashkova, L., Zabele, A., Freimanis, A., Hoth, P. & Huenges, E. 2001b. Elastic properties of siliciclastic rocks from Baltic Cambrian basin. In 63rd EAGE Conference and Technical Exhibition. Extended Abstracts, Volume 1, pp. 1–4. European Association of Geoscientists & Engineers, Amsterdam, The Netherlands. N-24.
Shogenova, A., Kleesment, A. & Shogenov, K. 2005. Chemical composition and physical properties of the rock. In Mehikoorma (421) Drill Core (Põldvere, A., ed.), Estonian Geological Sections, 6, 31–38.
Shogenova, A., Kleesment, A. & Shogenov, K. 2006. Lithologic determination of Devonian dolomitic carbonate-siliciclastic rocks from Estonia by physical parameters. In 68th EAGE Conference & Exhibition, Extended Abstracts & Exhibitors’ Catalogue, P207, pp. 1–5. European Association of Geoscientists & Engineers, Vienna 2006, Houten, The Netherlands.
http://dx.doi.org/10.3997/2214-4609.201402446
Shogenova, A., Sliaupa, S., Vaher, R., Shogenov, K. & Pomeranceva, R. 2009a. The Baltic Basin: structure, properties of reservoir rocks and capacity for geological storage of CO2. Estonian Journal of Earth Sciences, 58, 259–267.
http://dx.doi.org/10.3176/earth.2009.4.04
Shogenova, A., Šliaupa, S., Shogenov, K., Šliaupiene, R., Pomeranceva, R., Vaher, R., Uibu, M. & Kuusik, R. 2009b. Possibilities for geological storage and mineral trapping of industrial CO2 emissions in the Baltic region. Energy Procedia, 1, 2753–2760.
http://dx.doi.org/10.1016/j.egypro.2009.02.046
Shogenova, A., Shogenov, K., Vaher, R., Ivask, J., Sliaupa, S., Vangkilde-Pedersen, T., Uibu, M. & Kuusik, R. 2011a. CO2 geological storage capacity analysis in Estonia and neighboring regions. Energy Procedia, 4, 2785–2792.
http://dx.doi.org/10.1016/j.egypro.2011.02.182
Shogenova, A., Shogenov, K., Pomeranceva, R., Nulle, I., Neele, F. & Hendriks, C. 2011b. Economic modelling of the capture–transport–sink scenario of industrial CO2 emissions: the Estonian–Latvian cross-border case study. Energy Procedia, 4, 2385–2392.
http://dx.doi.org/10.1016/j.egypro.2011.02.131
Shvetsov, M. S. 1948. Petrografiya osadochnykh porod [Petrography of Sedimentary Rocks], GosGeolTehIzdat, 385 pp. [in Russian].
Sikorska, M. & Paczesna, J. 1997. Quartz cementation in Cambrian sandstones and the background of their burial history of the East European Craton. Geological Quarterly, 41, 265–272.
Silant¢ev, V., Freimanis, A., Mikhailovskij, P., Pavlovskij, A. & Karpitskij, V. 1970. Geology and Oil Potential of South Kandava Structure. Unpublished exploration report, Latvian Environmental, Geology and Meteorology Centre (LEGMC), Latvia, Riga [in Russian].
Sliaupa, S., Rasteniene, V., Lashkova, L. & Shogenova, A. 2001. Factors controlling petrophysical properties of Cambrian siliciclastic deposits of central and western Lithuania. In Research in Petroleum Technology (Fabricius, I. L., ed.), pp. 157–180. Nordic Petroleum Series, V, Nordisk Energiforskning, Norway.
Sliaupa, S., Shogenova, A., Shogenov, K., Sliaupiene, R., Zabele, A. & Vaher, R. 2008a. Industrial carbon dioxide emissions and potential geological sinks in the Baltic States. Oil Shale, 25, 465–484.
http://dx.doi.org/10.3176/oil.2008.4.06
Sliaupa, S., Cyziene, J., Molenaar, N. & Musteikyte, D. 2008b. Ferroan dolomite cement in Cambrian sandstones: burial history and hydrocarbon generation of the Baltic sedimentary basin. Acta Geologica Polonica, 58, 27–41.
Šliaupa, S., Lojka, R., Tasáryová, Z., Kolejka, V., Hladík, V., Kotulová, J., Kucharič, L., Fejdi, V., Wojcicki, A., Tarkowski, R., Uliasz-Misiak, B., Šliaupienė, R., Nulle, I., Pomeranceva, R., Ivanova, O., Shogenova, A. & Shogenov, K. 2013. CO2 storage potential of sedimentary basins of Slovakia, The Czech Republic, Poland, and Baltic States. Geological Quarterly, 57, 219–232.
http://dx.doi.org/10.7306/gq.1088
Sopher, D., Juhlin, C. & Erlström, M. 2014. A probabilistic assessment of the effective CO2 storage capacity within a Swedish sector of the Baltic Basin. International Journal of Greenhouse Gas Control, 30, 148–170.
http://dx.doi.org/10.1016/j.ijggc.2014.09.009
Šteinerts, G. 2012. Maritime delimitation of Latvian waters, history and future prospects. Journal of Maritime Transport and Engineering, 1, 47–53.
Sundberg, F. A., Zhao, Y. L., Yuan, J. L. & Lin, J. P. 2011. Detailed trilobite biostratigraphy across the proposed GSSP for Stage 5 (“Middle Cambrian” boundary) at the Wuliu-Zengjiayan section, Guizhou, China. Bulletin of Geosciences, 86, 423–464.
http://dx.doi.org/10.3140/bull.geosci.1211
Svec, R. K. & Grigg, R. B. 2001. Physical effects of WAG fluids on carbonate core plugs. In SPE Annual Technical Conference and Exhibition, SPE 71496, New Orleans, LA, 10 pages.
http://dx.doi.org/10.2118/71496-ms
Tiab, D. & Donaldson, E. C. 2012. Petrophysics. Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, 3rd ed. Gulf Professional Publishing, Oxford, 950 pp.
Tucker, M. E. 2001. Sedimentary Petrology, 3rd ed. Blackwell Science, Oxford, 272 pp.
Van der Meer, L. G. H. 1993. The conditions limiting CO2 storage in aquifers. Energy Conversion and Management, 34, 959–966.
http://dx.doi.org/10.1016/0196-8904(93)90042-9
Vangkilde-Pedersen, T. & Kirk, K. (eds). 2009. FP6 EU GeoCapacity Project, Assessing European Capacity for Geological Storage of Carbon Dioxide, Storage Capacity. D26, WP4 Report Capacity Standards and Site Selection Criteria. Geological Survey of Denmark and Greenland, 45 pp., http://www.geology.cz/geocapacity/ publications [accessed 20 April 2015].
Vernon, R., O’Neil, N., Pasquali, R. & Nieminen, M. 2013. Screening of Prospective Sites for Geological Storage of CO2 in the Southern Baltic Sea. VTT Technology 101, Espoo, Finland, 70 pp.
Zdanavičiute, O. & Sakalauskas, K. (eds). 2001. Petroleum Geology of Lithuania and Southeastern Baltic. Institute of Geology, Vilnius, 204 pp.