ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
A comprehensive approach to the 3D geological modelling of sedimentary basins: example of Latvia, the central part of the Baltic Basin; pp. 173–188
PDF | 10.3176/earth.2015.25

Authors
Konrāds Popovs, Tomas Saks, Jānis Jātnieks
Abstract

This paper presents a semi-automatic approach adapted to the modelling of the geological structure of sedimentary basins. The modelling approach is based on developing the algorithm of the main geological processes so that the geometrical relationship is automatically defined between model elements. The algorithm is based on the assumption that sedimentary basins are formed as a result of the repeated sequence of sedimentation, faulting and erosion. This approach allows of successful modelling of the geological structure of the sedimentary basins with limited data coverage: stratigraphic intervals from well logs describing the thicknesses of sedimentary strata and a limited amount of structural data. Sedimentary layers are handled by modelling assuming non-eroded thickness distribution and using geometrical adjustment from the known fault displacements. As a result geometrical relationships of the model layers are deduced automatically in the presence of unconformities.

An application of this methodology, a 3D geological model of Latvia, the central part of the Baltic Basin, is presented. The results show that this model is geologically reasonable for achieving the structural and stratigraphic concepts.

 

References

Bardossy, G. & Fodor, J. 2001. Traditional and new ways to handle uncertainty in geology. National Resources Research, 10, 179–187.

http://dx.doi.org/10.1023/A:1012513107364

Bistacchi, A., Massironi, M., Piaz, G., Monopoli, B., Schiavo, A. & Toffolon, G. 2008. 3D fold and fault reconstruction with an uncertainty model: an example from an Alpine tunnel case study. Computers & Geosciences, 34, 351–372.
http://dx.doi.org/10.1016/j.cageo.2007.04.002

Brangulis, A. J. & Kaņevs, S. 2002. Latvijas tektonika [Tectonics of Latvia]. Valsts ģeoloģijas dienests, Riga, 50 pp. [in Latvian].

Brangulis, A. J., Juškevičs, V., Kondratjeva, S., Gavena, I. & Pomeranceva, R. 2000. Latvijas ģeoloģiskā karte, M 1 : 200000 [Geological Map of Latvia, Scale 1:200000]. Valsts ģeoloģijas dienests, Rīga [in Latvian].

Carrera, N., Anton, J. & Roca, E. 2009. 3D reconstruction of geological surfaces by the equivalent dip-domain method: an example from field data of the Cerro Bayo Ancicline (Cordillera Oriental, NW Argentine Andes). Journal of Structural Geology, 31, 1573–1585.
http://dx.doi.org/10.1016/j.jsg.2009.08.006

Caumon, G., Collon-Drouaillet, P., Le Carlier de Veslud, C., Viseur, S. & Sausse, J. 2009. Surface-based 3D modeling of geological structures. Mathematical Geosciences, 41, 927–945.
http://dx.doi.org/10.1007/s11004-009-9244-2

Dahlstrom, C. D. 1969. Balanced cross sections. Canadian Journal of Earth Sciences, 6, 743–757.
http://dx.doi.org/10.1139/e69-069

Gailite, L. K., Ulst, R. Z. & Yakovleva, V. I. 1987. Stratotipicheskie i tipovye razrezy silura Latvii [Stratotype and Type Sections of the Silurian of Latvia]. Zinatne, Riga, 183 pp. [in Russian].

Houlding, S. W. 1994. 3D Geoscience Modeling; Computer Techniques for Geological Characterization. Springer-Verlag, Berlin, 320 pp.
http://dx.doi.org/10.1007/978-3-642-79012-6

Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. 2008. Hole-filled SRTM for the Globe Version 4. Available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org) [accessed 20 October 2014].

Kauffman, O. & Martin, T. 2008. 3D geological modelling from boreholes, cross sections and geological maps, application over former natural gas storages in coal mines. Computers & Geosciences, 34, 278–290.
http://dx.doi.org/10.1016/j.cageo.2007.09.005

Lazauskienė, J. & Šliaupa, S. 2002. A set of pre-Quaternary structural maps of Lithuania – the first step towards the 3D model of Lithuanian underground. In Annual Report 2001 (Satkūnas, J., ed.), pp. 56–57. Geological Survey of Lithuania, Vilnius.

Lazauskienė, J., Stephenson, R., Šliaupa, S. & van Wees, J. 2002. 3-D flexural modelling of the Silurian Baltic Basin. Tectonophysics, 346, 115–135.
http://dx.doi.org/10.1016/S0040-1951(01)00231-1

Lemon, A. & Jones, N. 2003. Building solid models from boreholes and user-defined cross-sections. Computers & Geosciences, 29, 547–555.
http://dx.doi.org/10.1016/S0098-3004(03)00051-7

Lukševičs, E., Stinkulis, Ģ., Mūrnieks, A. & Popovs, K. 2012. Geological evolution of the Baltic Artesian Basin. In Highlights of Groundwater Research in the Baltic Artesian Basin (Dēlina, A., Kalvāns, A., Saks, T., Bethers, U. & Vircavs, V., eds), pp. 7–53. University of Latvia, Riga.

Marrota, A. M. & Sabadini, R. 2004. The signatures of tectonic and glacial isostatic adjustment revealed by the strain rate in Europe. Geophysical Journal International, 157, 865–870.
http://dx.doi.org/10.1111/j.1365-246X.2004.02275.x

Poprowa, P., Šliaupa, S., Stephenson, R. & Lazauskienė, J. 1999. Late Vendian–Early Palaeozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis.

 

Back to Issue