Palaeo-, rock magnetic and geochemical studies were conducted on volcanic samples from the Lištice area to improve the knowledge of Palaeozoic volcanic evolution in the Prague Basin. The magnetic data display no significant differences between two studied localities, indicating one magnetizing event for both localities. Geochemical data suggest that Lištice basalt could have originated from deep melting of the garnet peridotite mantle source during the attenuation and rifting of the continental lithosphere connected with asthenospheric mantle upwelling. The dataset furthermore supports the evidence of syn- or post-intrusive fluid interactions and low-temperature stages of alteration. The Ti-magnetite within amygdales of the samples was found to be carrying the characteristic remanent magnetization and reflects probably the Permo-Carboniferous remagnetization of volcanic phases.
Aϊfa, T., Pruner, P., Chadima, M. & Štorch, P. 2007. Structural evolution of the Prague synform (Czech Republic) during Silurian times: an AMS, rock magnetism, and palaeomagnetic study of the Svatý Jan pod Skalou dikes. Consequences for the nappes emplacement. Geological Society of America Special Papers, 423, 249–265.
Besse, J. & Courtillot, V. 1991. Revised and synthetic apparent polar wander paths of the African, Eurasian, North American and Indian plates, and true polar wander since 200 Ma. Journal of Geophysical Research: Solid Earth, 96, 4029–4050.
http://dx.doi.org/10.1029/90JB01916
Chadima, M. & Hrouda, F. 2006. Remasoft 3.0 – a user friendly paleomagnetic data browser and analyzer. Travaux Geophysiques, XXVII, 20–21.
Dominguez, A. R., Van der Voo, R., Torsvik, T. H., Hendriks, B. W. H., Abrajevitch, A., Domeier, M., Larsen, B. T. & Rousse, S. 2011. The ~ 270 Ma palaeolatitude of Baltica and its significance for Pangea models. Geophysical Journal International, 186, 529–550.
http://dx.doi.org/10.1111/j.1365-246X.2011.05061.x
Dörr, W., Zulauf, G., Fiala, J., Franke, W. & Vejnar, Z. 2002. Neoproterozoic to Early Cambrian history of an active plate in the Teplá–Barrandian unit – a correlation of U–Pb isotopic dilution TIMS ages (Bohemia, Czech Republic). Tectonophysics, 352, 65–85.
http://dx.doi.org/10.1016/S0040-1951(02)00189-0
Fiala, F. 1970. Silurian and Devonian diabases of the Barrandian. Sborník geologických Věd, Geologie, 17, 7–89 [in Czech].
Hart, S. R., Erlank, A. J. & Kable, E. J. D. 1974. Sea floor basalt alteration: some chemical and Sr isotopic effects. Contributions to Mineralogy and Petrology, 44, 219–230.
http://dx.doi.org/10.1007/BF00413167
Janoušek, V., Farrow, C. M. & Erban, V. 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47, 1255–1259.
http://dx.doi.org/10.1093/petrology/egl013
Kletetschka, G., Schnabl, P., Šifnerová, K., Tasáryová, Z., Manda, Š. & Pruner, P. 2013. Magnetic scanning and interpretation of paleomagnetic data from Prague Synform’s volcanics. Studia Geophysica et Geodaetica, 57, 103–117.
http://dx.doi.org/10.1007/s11200-012-0723-4
Kříž, J. 1991. The Silurian of the Prague Basin (Bohemia) – tectonic, eustatic and volcanic controls on facies and faunal development. Special Papers in Palaeontology, 44, 179–204.
Kříž, J. 1998. Silurian. In Palaeozoic of the Barrandian (Cambrian to Devonian) (Chlupáč, I., Havlíček, V., Kříž, J., Kukal, Z. & Štorch, P., eds), pp. 79–101. Czech Geological Survey, Prague.
Krs, M. & Pruner, P. 1995. Palaeomagnetism and palaeogeography of the Variscan formations of the Bohemian Massif, comparison with other European regions. Journal of the Czech Geological Society, 40, 3–46.
Krs, M., Pruner, P. & Man, O. 2001. Tectonic and paleogeographic interpretation of the paleomagnetism of Variscan and pre-Variscan formations of the Bohemian Massif, with special reference to the Barrandian terrane. Tectonophysics, 332, 93–114.
http://dx.doi.org/10.1016/S0040-1951(00)00251-1
Lowrie, W. 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters, 17, 159–162.
http://dx.doi.org/10.1029/GL017i002p00159
Melichar, R. 2004. Tectonics of the Prague synform: a hundred years of scientific discussion. Krystalinikum, 30, 167–187.
Pearce, J. A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14–48.
http://dx.doi.org/10.1016/j.lithos.2007.06.016
Příhoda, K., Krs, M., Pešina, B. & Bláha, J. 1989. MAVACS – a new system creating a nonmagnetic environment for palaeomagnetic studies. Cuadernos de Geologica Ibérica, 12, 223–250.
Saar, M. O. & Manga, M. 1999. Permeability–porosity relationship in vesicular basalts. Geophysical Research Letters, 26, 111–114.
http://dx.doi.org/10.1029/1998GL900256
Seyfried, W. E. Jr. 1979. Low temperature basalt alteration by sea water: an experimental study at 70 °C and 150 °C. Geochimica et Cosmochimica Acta, 43, 1937–1947.
http://dx.doi.org/10.1016/0016-7037(79)90006-1
Stampfli, G., von Raumer, J. & Borel, G. D. 2002. Palaeozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. Geological Society of America Special Papers, 364, 263–278.
Štorch, P. 1998. Volcanism. In Palaeozoic of the Barrandian (Cambrian to Devonian) (Chlupáč, I., Havlíček, V., Kříž, J., Kukal, Z. & Štorch, P., eds), pp. 149–164. Czech Geological Survey, Prague.
Sun, S. & McDonough, W. F. 1989. Chemical and isotope systematics of oceanic basalts: implication for mantle composition and processes. In Magmatism in Ocean Basins (Saunders, A. D. & Norry, M. J., eds), pp. 313–345. The Geological Society, London.