ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Changes in climate, catchment vegetation and hydrogeology as the causes of dramatic lake-level fluctuations in the Kurtna Lake District, NE Estonia; pp. 45–61
PDF | doi: 10.3176/earth.2014.04

Authors
Marko Vainu, Jaanus Terasmaa
Abstract

Numerous lakes in the world serve as sensitive indicators of climate change. Water levels for lakes Ahnejärv and Martiska, two vulnerable oligotrophic closed-basin lakes on sandy plains in northeastern Estonia, fell more than 3 m in 1946–1987 and rose up to 2 m by 2009. Earlier studies indicated that changes in rates of groundwater abstraction were primarily responsible for the changes, but scientifically sound explanations for water-level fluctuations were still lacking. Despite the inconsistent water-level dataset, we were able to assess the importance of changing climate, catchment vegetation and hydrogeology in water-level fluctuations in these lakes. Our results from water-balance simulations indicate that before the initiation of ground­water abstraction in 1972 a change in the vegetation composition on the catchments triggered the lake-level decrease. The water-level rise in 1990–2009 was caused, in addition to the reduction of groundwater abstraction rates, by increased precipitation and decreased evaporation. The results stress that climate, catchment vegetation and hydrogeology must all be considered while evaluating the causes of modern water-level changes in lakes.

References

Abbaspour, M., Javid, A. H., Mirbagheri, S. A., Givi, F. A. & Moghimi, P. 2012. Investigation of lake drying attributed to climate change. International Journal of Environmental Science and Technology, 9, 257–266.
http://dx.doi.org/10.1007/s13762-012-0031-0

Adrian, R., O’Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D. & Van Donk, E. 2009. Lakes as sentinels of climate change. Limnology and Oceanography, 54, 2283–2297.
http://dx.doi.org/10.4319/lo.2009.54.6_part_2.2283

Allen, G. R., Pereira, S. L., Raes, D. & Smith, M. 1998. Crop Evapotranspiration – Guidelines for Computing Crop Water Requirements – FAO Irrigation and Drainage Paper 56. FAO, Rome, 300 pp.

Alley, W. M. 1984. On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models. Water Resources Research, 20, 1137–1149.
http://dx.doi.org/10.1029/WR020i008p01137

Almquist-Jacobson, H. 1995. Lake-level fluctuations at Ljustjärnen, central Sweden and their implications for the Holocene climate of Scandinavia. Palaeogeography, Palaeoclimatology, Palaeoecology, 118, 269–290.
http://dx.doi.org/10.1016/0031-0182(95)00002-2

Anda, A. & Varga, B. 2010. Analysis of precipitation on Lake Balaton catchments from 1921 to 2007. Idojaras, 114, 187–201.

Andréassian, V. 2004. Waters and forests: from historical controversy to scientific debate. Journal of Hydrology, 291, 1–27.
http://dx.doi.org/10.1016/j.jhydrol.2003.12.015

Bjerring, R., Olsen, J., Jeppesen, E., Buchardt, B., Heinemeier, J., McGowan, S., Leavitt, P. R., Enevold, R. & Odgaard, B. V. 2013. Climate-driven changes in water level: a decadal scale multi-proxy study recording the 8.2-ka event and ecosystem responses in Lake Sarup (Denmark). Journal of Paleolimnology, 49, 267–285.
http://dx.doi.org/10.1007/s10933-012-9673-7

Brown, A., Zhang, L., McMahon, T. A., Western, A. W. & Vertessy, R. A. 2005. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310, 28–61.
http://dx.doi.org/10.1016/j.jhydrol.2004.12.010

Calder, I. R., Hall, R. L., Bastable, H. G., Gunston, H. M., Shela, O., Chirwa, A. & Kafundu, R. 1995. The impact of land use change on water resources in sub-Saharan Africa: a modelling study of Lake Malawi. Journal of Hydrology, 170, 123–135.
http://dx.doi.org/10.1016/0022-1694(94)02679-6

Cardille, J. A., Coe, M. T. & Vano, J. A. 2004. Impacts of climate variation and catchment area on water balance and lake hydrologic type in groundwater-dominated systems: a generic lake model. Earth Interactions, 8, 1–24.
http://dx.doi.org/10.1175/1087-3562(2004)8<1:IOCVAC>2.0.CO;2

Cardille, J. A., Carpenter, S. R., Foley, J. A., Hanson, P. C., Turner, M. G. & Vano, J. A. 2009. Climate change and lakes: estimating sensitivities of water and carbon budgets. Journal of Geophysical Research: Biogeosciences, 114, G03011.

Davie, T. 2009. Fundamentals of Hydrology. Second Edition. Routledge, London, 200 pp.

Dearing, J. A. 1997. Sedimentary indicators of lake-level changes in the humid temperate zone: a critical review. Journal of Paleolimnology, 18, 1–14.
http://dx.doi.org/10.1023/A:1007916210820

Descheemaeker, K., Nyssen, J., Poesen, J., Raes, D., Haile, M., Muys, B. & Deckers, S. 2006. Runoff on slopes with restoring vegetation: a case study from the Tigray high-lands, Ethiopia. Journal of Hydrology, 331, 219–241.
http://dx.doi.org/10.1016/j.jhydrol.2006.05.015

Digerfeldt, G. 1986. Studies on past lake-level fluctuations. In Handbook of Holocene Palaeoecology and Palaeo-hydrology (Berglund, B., ed.), pp. 127–144. John Wiley & Sons, New York.

Dingman, S. L. 2002. Physical Hydrology. Second Edition. Prentice Hall, New Jersey, 600 pp.

Efron, B. & Tibshirani, R. J. 1998. An Introduction to the Bootstrap. Chapman & Hall/CRC, New York, 436 pp.

[ELB] Estonian Land Board. 1948. Topographical map. A 1 : 25 000.

[ELB] Estonian Land Board. 1961. Topographical map. A 1 : 25 000.

[ELB] Estonian Land Board. 1973. Topographical map. A 1 : 10 000.

Erg, K. & Ilomets, M. 1989. Mäetööde mõju Kurtna järvede veetasemele – seisund ja prognoos [The effect of mining on the water level of Kurtna lakes – current state and prognosis]. In Kurtna järvestiku looduslik seisund ja selle areng II [Natural Status and Development of Kurtna Lake District II] (Ilomets, M., ed.), pp. 47–54. Valgus, Tallinn [in Estonian].

Fitts, C. R. 2002. Groundwater Science. Academic Press, London, 450 pp.

George, G., Hurley, M. & Hewitt, D. 2007. The impact of climate change on the physical characteristics of the lakes in the English Lake District. Freshwater Biology, 52, 1647–1666.
http://dx.doi.org/10.1111/j.1365-2427.2007.01773.x

Gleeson, T., Novakowski, K., Cook, P. G. & Kyser, T. K. 2009. Constraining groundwater discharge in a large watershed: integrated isotopic, hydraulic, and thermal data from the Canadian shield. Water Resources Research, 45, DOI: 10.1029/2008WR007622.
http://dx.doi.org/10.1029/2008WR007622

Häelm, M. 2010. Ida-Virumaa pinnaveerežiimi mõjutavad looduslikud ja antropogeensed faktorid Kurtna järvistu ja Purtse jõe näitel [The Influence of Natural and Anthropogenic Factors on the Surface Water Regime According to the Kurtna Lake District and Purtse River (Ida-Viru County)]. MSc thesis, Tallinn University, 60 pp. [in Estonian].

Harrison, S. P., Yu, G. & Vassiljev, J. 2002. Climate changes during the Holocene recorded by lakes from Europe. In Climate Development and History of the North Atlantic Realm (Wefer, G., Berger, W. H., Behre, K.-E. & Jansen, E., eds), pp. 191–204. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-662-04965-5_13

Hayashi, M. & Rosenberry, D. O. 2002. Effects of ground water exchange on the hydrology and ecology of surface water. Ground Water, 40, 309–316.
http://dx.doi.org/10.1111/j.1745-6584.2002.tb02659.x

Hostetler, S. W. & Bartlein, P. J. 1990. Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon. Water Resources Research, 26, 2603–2612.
http://dx.doi.org/10.1029/WR026i010p02603

Ilomets, M., Paalme, G. & Punning, J.-M. 1987. Kurtna järves-tiku seisund – uurimise eesmärk, strateegia ja võimalu-sed [The state of the Kurtna Lake District – purpose of study, strategy and opportunities]. In Kurtna järvestiku looduslik seisund ja selle areng I [Natural Status and Development of the Kurtna Lake District I] (Ilomets, M., ed.), pp. 8–15. Valgus, Tallinn [in Estonian].

Kaakinen, A., Salonen, V.-P., Artimo, A. & Saraperä, S. 2010. Holocene groundwater table fluctuations in a small perched aquifer inferred from sediment record of Kankaanjärvi, SW Finland. Boreal Environment Research, 15, 58–68.

Korhola, A., Vasko, K., Toivonen, H. T. T. & Olander, H. 2002. Holocene temperature changes in northern Fennoscandia reconstructed from chironomids using Bayesian modelling. Quaternary Science Reviews, 21, 1841–1860.
http://dx.doi.org/10.1016/S0277-3791(02)00003-3

Lemoalle, J., Bader, J. C., Leblanc, M. & Sedick, A. 2012. Recent changes in Lake Chad: observations, simulations and management options (1973–2011). Global Planetary Change, 80–81, 247–254.
http://dx.doi.org/10.1016/j.gloplacha.2011.07.004

Linacre, E. T. 1993. Data-sparse estimation of lake evaporation, using a simplified Penman equation. Agricultural and Forest Meteorology, 64, 237–256.
http://dx.doi.org/10.1016/0168-1923(93)90031-C

Lode, E., Terasmaa, J., Vainu, M. & Leivits, M. 2012. Basin delineation of small wetlands of Estonia: LiDAR-based case study for Selisoo mire and lakes of Kurtna Kame Field. Estonia. Geographical Studies, 11, 142–167.

Mäemets, A. 1977. Eesti NSV järved ja nende kaitse [Lakes of the Estonian SSR and Their Protection]. Valgus, Tallinn, 263 pp. [in Estonian].

Magny, M., Marguet, A., Chassepot, G. H. & Billaud, Y. 2001. Early and late Holocene water-level fluctuations of Lake Annecy, France: sediment and pollen evidence and climatic implications. Journal of Paleolimnology, 25, 215–227.
http://dx.doi.org/10.1023/A:1008195401085

Manley, R., Spirovska, M. & Andovska, S. 2008. Water Balance Model of Lake Dojran. BALWOIS 2008, Ohrid, 12 pp.

McCabe, G. J. & Markstrom, S. L. 2007. A Monthly Water-Balance Model Driven by a Graphical User Interface. http://pubs.usgs.gov/of/2007/1088/pdf/of07-1088_508.pdf, 12 pp. [accessed 01.10.2013].

Mercier, F., Cazenave, A. & Maheu, C. 2002. Interannual lake level fluctuations (1993–1999) in Africa from Topex/ Poseidon: connections with ocean-atmosphere interactions over the Indian Ocean. Global Planetary Change, 32, 141–163.
http://dx.doi.org/10.1016/S0921-8181(01)00139-4

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D. & Veith, T. L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885–900.
http://dx.doi.org/10.13031/2013.23153

Peńa-Arancibia, J.-L., van Dijk, A. I. J. M., Guerschman, J. P., Mulligan, M., (Sampurno) Bruijnzeel, L. A. & McVicar, T. R. 2012. Detecting changes in streamflow after partial woodland clearing in two large catchments in the seasonal tropics. Journal of Hydrology, 416–417, 60–71.
http://dx.doi.org/10.1016/j.jhydrol.2011.11.036

Penman, H. L. 1948. Natural evaporation from open water, bare soil, and grass. Proceedings of the Royal Society of London, Series A, 193, 120–146.
http://dx.doi.org/10.1098/rspa.1948.0037

Perrone, U., Facchinelli, A. & Sacchi, E. 2008. Phosphorus dynamics in a small eutrophic Italian lake. Water, Air & Soil Pollution, 189, 335–351.
http://dx.doi.org/10.1007/s11270-007-9551-5

Põder, T., Riet, K., Savitski, L., Domanova, N., Metsur, M., Ideon, T., Krapiva, A., Ott, I., Laugaste, R., Mäemets, A., Mäemets, A., Toom, A., Lokk, S., Heinsalu, A., Kaup, E., Künnis, K. & Jagomägi, J. 1996. Mõjutatav keskkond [Affected environment]. In Keskkonnaekspertiis. Kurtna piirkonna tootmisalade mõju järvestiku seisundile [Environ-mental Assessment. The Effect of Industrial Areas in the Kurtna Region on the Status of the Lakes] (Ideon, T. & Põder, T., eds), pp. 16–48. AS Ideon & Ko, Tallinn [in Estonian].

Punning, J.-M. (ed.). 1994. The Influence of Natural and Anthropogenic Factors on the Development of Land-scapes. The Results of a Comprehensive Study in NE Estonia. Institute of Ecology, Estonian Academy of Sciences, Publication 2, 227 pp.

Punning, J.-M., Koff, T., Kadastik, E. & Mikomägi, A. 2005. Holocene lake level fluctuations recorded in the sediment composition of Lake Juusa, southeastern Estonia. Journal of Paleolimnology, 34, 377–390.
http://dx.doi.org/10.1007/s10933-005-6751-0

Punning, J.-M., Terasmaa, J. & Vaasma, T. 2006. The impact of lake-level fluctuations on the sediment composition. Water, Air, & Soil Pollution: Focus, 6, 515–521.
http://dx.doi.org/10.1007/s11267-006-9035-4

Punning, J.-M., Boyle, J. F., Terasmaa, J., Vaasma, T. & Mikomägi, A. 2007. Changes in lake-sediment structure and composition caused by human impact: repeated studies of Lake Martiska, Estonia. The Holocene, 17, 145–151.
http://dx.doi.org/10.1177/0959683607073297

Reta, G. L. 2011. Groundwater and Lake Water Balance of Lake Naivasha Using 3-D Transient Groundwater Model. MSc. Thesis, University of Twente, 54 pp.

Rosenberry, D. O., Winter, T. C., Buso, D. C. & Likens, G. E. 2007. Comparison of 15 evaporation methods applied to a small mountain lake in northeastern USA. Journal of Hydrology, 340, 149–166.
http://dx.doi.org/10.1016/j.jhydrol.2007.03.018

Rushton, K. R. 2005. Groundwater Hydrology: Conceptual and Computational Models. John Wiley & Sons Ltd, Chichester, 430 pp.

Shaw, E. M., Beven, K. J., Chappell, N. A. & Lamb, R. 2011. Hydrology in Practice. Fourth Edition. Spon Press, London & New York, 543 pp.

Shuttleworth, W. J. 1993. Evaporation. In Handbook of Hydrology (Maidment, D. R., ed.-in-chief), pp. 4.1–4.53. McGraw-Hill, New York.

Siriwardena, L., Finlayson, B. L. & McMahon, T. A. 2006. The impact of land use change on catchment hydrology in large catchments: the Comet River, Central Queensland, Australia. Journal of Hydrology, 326, 199–214.
http://dx.doi.org/10.1016/j.jhydrol.2005.10.030

Smith, B., Aasa, A., Ahas, R., Blenckner, T., Callaghan, T., de Chazal, J., Humborg, C., Jönsson, A. M., Kellomäki, S., Kull, A., Lehikoinen, E., Mander, Ü, Nõges, P, Nõges, T., Rounsevell, M., Sofiev, M., Tryjanowski, P. & Wolf, A. 2008. Climate-related change in terrestrial and fresh­water ecosystems. In Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies (The BACC Author Team, eds), pp. 221–308. Springer-Verlag, Berlin.

Sophocleous, M. 2002. Interactions between groundwater and surface water: the state of the science. Hydrogeology Journal, 10, 348.
http://dx.doi.org/10.1007/s10040-002-0204-x

Stottlemyer, R. & Troendle, C. A. 2001. Effect of canopy removal on snowpack quantity and quality, Fraser experimental forest, Colorado. Journal of Hydrology, 245, 165–176.
http://dx.doi.org/10.1016/S0022-1694(01)00351-1

Street-Perrott, F. A. & Harrison, S. P. 1985. Lake levels and climate reconstruction. In Paleoclimate Analysis and Modeling (Hecht, A. D., ed.), pp. 291–340. John Wiley, New York.

Tamm, T. 2002. Effects of Meteorological Conditions and Water Management on Hydrological Processes in Agricultural Fields: Parametrization and Modeling on Estonian Case Studies. Helsinki University of Technology, Helsinki, 194 pp.

Taner, M. Ü., Carleton, J. N. & Wellman, M. 2011. Integrated model projections of climate change impacts on a North American lake. Ecological Modelling, 222, 3380–3393.
http://dx.doi.org/10.1016/j.ecolmodel.2011.07.015

Tao, J., Yongqin, D. C., Chong-yu, X., Xiaohong, C., Xi, C. & Singh, V. P. 2007. Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. Journal of Hydrology, 336, 316–333.
http://dx.doi.org/10.1016/j.jhydrol.2007.01.010

Terasmaa, J. 2011. Lake basin development in the Holocene and its impact on the sedimentation dynamics in a small lake (southern Estonia). Estonian Journal of Earth Sciences, 60, 159–171.
http://dx.doi.org/10.3176/earth.2011.3.04

Terasmaa, J., Puusepp, L., Marzecová, A., Vandel, E., Vaasma, T. & Koff, T. 2013. Natural and human-induced environ-mental changes in Eastern Europe during the Holocene: a multi-proxy palaeolimnological study of a small Latvian lake in a humid temperate zone. Journal of Paleolimnology, 49, 663–678.
http://dx.doi.org/10.1007/s10933-013-9683-0

Twine, T. E., Kucharik, C. J. & Foley, J. A. 2004. Effects of land cover change on the energy and water balance of the Mississippi River basin. Journal of Hydrometeorology, 5, 640–655.
http://dx.doi.org/10.1175/1525-7541(2004)005<0640:EOLCCO>2.0.CO;2

Vainu, M. 2011. Häiringute peegeldused järvede veebilansis Kurtna järvistu kolme umbjärve näitel [The Effects of Disturbances on Lake Water-Balance – Based on Three Closed-Basin Lakes in the Kurtna Lake District]. MSc thesis, Tallinn University, 98 pp. [in Estonian].

Valiantzas, J. D. 2006. Simplified version for the Penman evaporation equation using routine weather data. Journal of Hydrology, 331, 690–702.
http://dx.doi.org/10.1016/j.jhydrol.2006.06.012

Vano, J. A., Foley, J. A., Kucharik, C. J. & Coe, M. T. 2008. Controls of climatic variability and land cover on land surface hydrology of northern Wisconsin, USA. Journal of Geophysical Research: Biogeosciences, 113
http://dx.doi.org/10.1029/2007JG000681

Vassiljev, J. 2007. Lake level studies: modeling. In Encyclopedia of Quaternary Science (Elias, S. A., ed.-in-chief), pp. 1366–1374. Elsevier.
http://dx.doi.org/10.1016/B0-44-452747-8/00167-8

Vassiljev, J., Harrison, S. P., Hostetler, P. J. & Bartlein, P. J. 1994. Simulation of long-term thermal characteristics of three Estonian lakes. Journal of Hydrology, 163, 107–123.
http://dx.doi.org/10.1016/0022-1694(94)90025-6

Vassiljev, J., Harrison, S. P. & Guiot, J. 1998. Simulating the Holocene lake-level record of Lake Bysjön, southern Sweden. Quaternary Research, 49, 62–71.
http://dx.doi.org/10.1006/qres.1997.1942

Winter, T. C., Harvey, J. W., Franke, O. L. & Alley, W. M. 1998. Ground Water and Surface Water: a Single Resource. Circular 1139, USGS, Denver, Colorado, 79 pp.

Yu, G. & Harrison, S. P. 1995. Holocene changes in atmospheric circulation patterns as shown by lake status changes in northern Europe. Boreas, 24, 260–268.
http://dx.doi.org/10.1111/j.1502-3885.1995.tb00778.x

Back to Issue