ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2024): 0.8
Research article
Morphostratigraphy and chronology of depositional and erosional events at the Järve scarp (Saaremaa, western Estonia) over the past 2000 years; pp. 35–52
PDF | 10.3176/earth.2026.03

SUPPLEMENTARY MATERIAL

Authors
Ülo Suursaar ORCID Icon, Katre Luik ORCID Icon, Alar Rosentau ORCID Icon, Helena Alexanderson ORCID Icon, Reimo Rivis, Tiit Vaasma ORCID Icon, Egert Vandel ORCID Icon, Kadri Vilumaa ORCID Icon, Donatas Pupienis ORCID Icon, Hannes Tõnisson ORCID Icon
Abstract

Influenced by climate warming and sea-level rise, seacoasts in many parts of the world are undergoing regime shifts, including increased coastal erosion in the southeastern Baltic Sea. The aim of this study is to reconstruct the depositional and erosional history of the Järve coastal scarp using sediment stratigraphy, new luminescence and radiocarbon dates, ground-penetrating radar, and LiDAR data. The seaward ridge, where the 3.5-m-high sandy scarp is located, began to form around 1600 years ago, in front of a 3500–4000-year-old palaeospit system that developed through sediment accumulation and postglacial uplift. The lower section of the outcrop was deposited in the shallow nearshore zone, where underwater sandbars acted as nuclei for spit formation. Darker sediment layers and variations in lamination patterns reflect changes in sediment sources and storm activity. Above the marine-deposited sandy layers lies a thin aeolian unit, which is only weakly developed at the Järve outcrop. Dune features occur only in a few blowouts, likely associated with the Little Ice Age (~1300–1850 CE) and anthropogenic vegetation disturbance, such as logging or slash-and-burn agriculture. Over the past ~100 years, the formerly emergent system of beach ridges and spits has shifted to an erosional regime. The earlier relative sea-level fall has ceased, seasonal sea ice is diminishing, the impacts of winter storms are intensifying, and the scarp is retreating. This study demonstrates how global changes are manifested on seacoasts at a local scale and highlights methodological difficulties in using seashells for coastal stratigraphic dating.

References

Alves, E. Q., Macario, K., Ascough, P. and Bronk Ramsey, C. 2018. The worldwide marine radiocarbon reservoir effect: definitions, mechanisms, and prospects. Reviews of Geophysics56(1), 278–305. 
https://doi.org/10.1002/2017RG000588  

Andrén, T., Björck, S., Andrén, E., Conley, D., Zillén, L. and Anjar, J. 2011. The development of the Baltic Sea basin during the last 130 ka. In The Baltic Sea Basin (Harff, J., Björck, S. and Hoth, P., eds). Springer, Berlin, Heidelberg, 75–97. 
https://doi.org/10.1007/978-3-642-17220-5_4  

Ascough, P. L., Cook, G. T. and Dugmore, A. 2005. Methodological approaches to determining the marine radiocarbon reservoir effect. Progress in Physical Geography29(4), 532–547. 
https://doi.org/10.1191/0309133305pp461ra
http://eprints.gla.ac.uk/5017  

Blott, S. J. and Pye, K. 2001. Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms26(11), 1237–1248. 
https://doi.org/10.1002/esp.261

Buylaert, J. P., Murray, A. S., Thomsen, K. J. and Jain, M. 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements44(5–6), 560–565. 
https://doi.org/10.1016/j.radmeas.2009.02.007  

Buynevich, I. V., FitzGerald, D. M. and van Heteren, S. 2004. Sedimentary records of intense storms in Holocene barrier se­quences, Maine, USA. Maine Geology210(1–4), 135–148. 
https://doi.org/10.1016/j.margeo.2004.05.007  

Buynevich, I. V., Tõnisson, H., Suursaar, Ü., Pupienis, D., Davydov, O. V., Kont, A. et al. 2023. Diverse erosional indicators along a rapidly retreating Holocene strandplain margin, leeward Hiiumaa Island, Estonia. Baltica36(1), 79–88. 
https://doi.org/10.5200/baltica.2023.1.7  

Buynevich, I. V., Tõnisson, H., Pupienis, D., Rosentau, A., Bitinas, A., Jarmalavičius, D. et al. 2024. High-resolution sampling and rapid image-based assessment of dark opaque fractions in coastal sands. Journal of Coastal Research113(SP1), 778–782. 
https://doi.org/10.2112/JCR-SI113-153.1  

Clemmensen, L. B., Glad, A. C., Hansen, K. W. T. and Murray, A. S. 2015. Episodes of aeolian sand movement on a large spit system (Skagen Odde, Denmark) and North Atlantic storminess during the Little Ice Age. Bulletin of the Geological Society of Denmark63, 17–28. 
https://doi.org/10.37570/bgsd-2015-63-03  

Costas, S. 2022. Evolutionary trajectories of coastal sand barriers along the West Portuguese coast during the Holocene. Journal of Marine Science and Engineering10(12), 1894. 
https://doi.org/10.3390/jmse10121894  

Dearing, J. A. 1999. Environmental Magnetic Susceptibility: Using the Bartington MS2 System. 2nd ed. Chi Publishers, Kenilworth. 

Dobrotin, N., Bitinas, A., Michelevičius, D., Damušyte, A. and Mažeika, J. 2013. Reconstruction of the Dead (Grey) Dune evolution along the Curonian Spit, southeastern Baltic. Bulletin of the Geological Society of Finland85, 53–64. 
https://doi.org/10.17741/bgsf/85.1.004  

Dougherty, A. J. 2014. Extracting a record of Holocene storm erosion and deposition preserved in the morphostratigraphy of a prograded coastal barrier. Continental Shelf Research86, 116–131. 
https://doi.org/10.1016/j.csr.2013.10.014  

Durcan, J. A., King, G. E. and Duller, G. A. T. 2015. DRAC: Dose Rate and Age Calculator for trapped charge dating. Quaternary Geochronololgy28, 54–61. 
https://doi.org/10.1016/j.quageo.2015.03.012   

Eberhards, G. and Saltupe, B. 1995. Accelerated coastal erosion – implications for Latvia. Baltica9, 16–28.

ELB (Estonian Land Board). 2025a. Geological data. https://xgis. maaamet.ee/xgis2/page/app/geoloogia400k (accessed 2025-04-01).

ELB (Estonian Land Board). 2025b. Elevation data
http://geoportaal.maaamet.ee/eng/Maps-and-Data/Topographicdata/Elevation-data-p308.html (accessed 2025-04-01).

ELB (Estonian Land Board). 2025c. Historic maps
https://xgis.maaamet.ee/xgis2/page/app/ajalooline (accessed 2025-04-01).

ELB (Estonian Land Board). 2025d. Photo storage
https://fotoladu.maaamet.ee (accessed 2025-04-01).

Etverk, I. 1997. Lisamõtteid Anno Domini 1297 juurde (Additional thoughts on ‘Anno Domini 1297’). Eesti Mets2, 10–11.

EWS (Estonian Weather Service). 2025. Coastline stations
https://www.ilmateenistus.ee/meri/vaatlusandmed/kogu-rannik/kaart/?lang=en (accessed 2025-04-01).

Furmanczyk, K. and Musielak, S. 2002. Important features of coastline dynamics in Poland: “nodal points” and “gates”. In Baltic Coastal Ecosystems. Central and Eastern European Development Studies (Schernewski, G. and Schiewer, U., eds). Springer, Berlin, Heidelberg, 141–147. 
https://doi.org/10.1007/978-3-662-04769-9_10  

Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H. and Olley, J. M. 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry41(2), 339–364. 
https://doi.org/10.1111/j.1475-4754.1999.tb00987.x

Hang, T., Veski, S., Vassiljev, J., Poska, A., Kriiska, A. and Heinsalu, A. 2020. A new formal subdivision of the Holocene Series/Epoch in Estonia. Estonian Journal of Earth Sciences69(4), 269–280. 
https://doi.org/10.3176/earth.2020.15  

Harff, J., Jöns, H. and Rosentau, A. 2020. Geological, paleoclimatological, and archaeological history of the Baltic Sea region since the last glaciation. In Oxford Research Encyclopedia of Climate Science. Oxford University Press, Oxford, 1–50. 
https://doi.org/10.1093/acrefore/9780190228620.013.621  

Hedenström, A. and Possnert, G. 2001. Reservoir ages in Baltic Sea sediment – a case study of an isolation sequence from the Litorina Sea stage. Quaternary Science Reviews20(18), 1779–1785. 
https://doi.org/10.1016/S0277-3791(01)00069-5  

IPCC. 2021. AR6 Climate Change 2021: The Physical Science Basis. https://www.ipcc.ch/report/ar6/wg1 (accessed 2025-04-01).

Jaagus, J. and Suursaar, Ü. 2013. Long-term storminess and sea level variations on the Estonian coast of the Baltic Sea in relation to large-scale atmospheric circulation. Estonian Journal of Earth Sciences62(2), 73–92. 
https://doi.org/10.3176/earth.2013.07  

Jääts, L., Kihno, K., Tomson, P. and Konsa, M. 2010. Tracing fire cultivation in Estonia. Forestry Studies53, 53–65. 
https://doi.org/10.2478/v10132-011-0089-3  

Jackson, D. W. T., Costas, S. and Guisado-Pintado, E. 2019. Large-scale transgressive coastal dune behaviour in Europe during the Little Ice Age. Global and Planetary Change175, 82–91. 
https://doi.org/10.1016/j.gloplacha.2019.02.003  

Kalińska, E., Weckwerth, P., Lamsters, K., Alexanderson, H., Martewicz, J. and Rosentau, A. 2024. Paleostorm redeposition and post-glacial coastal chronology in the eastern Baltic Sea, Latvia. Geomorphology467, 109456. 
https://doi.org/10.1016/j.geomorph.2024.109456  

Kalm, V. 2006. Pleistocene chronostratigraphy in Estonia, southeastern sector of the Scandinavian glaciation. Quaternary Science Reviews25(9–10), 960–975. 
https://doi.org/10.1016/j.quascirev. 2005.08.005  

Kreutzer, S., Burow, C., Dietze, M., Fuchs, M. C., Schmidt, C., Fischer, M. et al. 2025. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 1.1.0. 
https://CRAN.R-project.org/package=Luminescence (accessed 2025-04-01).

Kuosmanen, N., Marquer, L., Tallavaara, M., Molinari, C., Zhang, Y., Alenius, T. et al. 2018. The role of climate, forest fires and human population size in Holocene vegetation dynamics in Fenno­scandia. Journal of Vegetation Science29(3), 382–392. 
https://doi.org/10.1111/jvs.12601  

Long, A. J., Strzelecki, M. C., Lloyd, J. M. and Bryant, C. L. 2012. Dating High Arctic Holocene relative sea level changes using juvenile articulated marine shells in raised beaches. Quaternary Science Reviews48, 61–66. 
https://doi.org/10.1016/j.quascirev.2012.06.009  

Lougheed, B. C., Filipsson, H. L. and Snowball, I. 2013. Large spatial variations in coastal 14C reservoir age – a case study from the Baltic Sea. Climate of the Past9(3), 1015–1028. 
https://doi.org/10.5194/cp-9-1015-2013  

Luik, K., Suursaar, Ü., Tõnisson, H., Rivis, R., Suuroja, S. and Vilumaa, K. 2024a. Millennia-long progradation turned into coastal erosion at Järve coast of the Baltic Sea. Journal of Coastal Research113(SP1), 235–239. 
https://doi.org/10.2112/JCR-SI113-047.1  

Luik, K., Tõnisson, H., Rivis, R., Vilumaa, K., Vaasma, T., Vandel, E. et al. 2024b. Geomorphology of the Järve coast (Saaremaa Island, Estonia). Dataset. 
https://doi.org/10.23673/re-484  

Luik, K., Tõnisson, H., Rivis, R., Vilumaa, K., Vaasma, T., Vandel, E. et al. 2025. Development shifts on the emerging Järve coast (Estonia) in Late Holocene. Marine Geology481, 107478. 
https://doi.org/10.1016/j.margeo.2025.107478  

Morton, R. A., Miller, T. L. and Moore, L. J. 2004. National Assessment Of Shoreline Change: Part 1, Historical Shoreline Changes and Associated Coastal Land Loss Along the U.S. Gulf of Mexico
https://doi.org/10.3133/ofr20041043
https://pubs.usgs.gov/publication/ofr20041043  

Murray, A. S. and Wintle, A. G. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements,32(1), 57–73. 
https://doi.org/10.1016/S1350-4487(99)00253-X  

Murray, A. S. and Wintle, A. G. 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements37(4–5), 377–381. 
https://doi.org/10.1016/S1350-4487(03)00053-2  

Murray, A., Arnold, L. J., Buylaert, J.-P., Guérin, G., Qin, J., Singhvi, A. K. et al. 2021. Optically stimulated luminescence dating using quartz. Nature Reviews Methods Primers, 1, 72. 
https://doi.org/10.1038/s43586-021-00068-5  

Muru, M., Rosentau, A., Preusser, F., Plado, J., Sibul, I., Jõeleht, A. et al. 2018. Reconstructing Holocene shore displacement and Stone Age palaeogeography from a foredune sequence on Ruhnu Island, Gulf of Riga, Baltic Sea. Geomorphology303, 434–445. 
https://doi.org/10.1016/j.geomorph.2017.12.016  

Najafzadeh, F. and Soomere, T. 2024. Impact of changes in sea ice cover on the wave climate of semi-enclosed, seasonally ice-covered water bodies at temperate latitudes: a case study in the Gulf of Riga. Estonian Journal of Earth Sciences73(1), 26–36. 
https://doi.org/10.3176/earth.2024.03  

Najafzadeh, F., Jankowski, M. Z., Giudici, A., Männikus, R., Suursaar, Ü., Viška, M. et al. 2024. Spatiotemporal variability of wave climate in the Gulf of Riga. Oceanologia66(1), 56–77. 
https://doi.org/10.1016/j.oceano.2023.11.001  

Nirgi, T., Grudzinska, I., Kalińska, E., Konsa, M., Jõeleht, A., Alexanderson, H. et al. 2022. Late-Holocene relative sea-level changes and palaeoenvironment of the Pre-Viking Age ship burials in Salme, Saaremaa Island, eastern Baltic Sea. The Holocene32(4), 237–253. 
https://doi.org/10.1177/09596836211066596  

Orviku, K. 2006. Development ties between Järve-Mändjala beach and Nasva harbour. Proceedings of the Estonian Maritime Academy3, 7–18. 

Pupienis, D., Buynevich, I., Ryabchuk, D., Jarmalavičius, D., Žilinskas, G., Fedorovič, J. et al. 2017. Spatial patterns in heavy-mineral concentrations along the Curonian Spit coast, southeastern Baltic Sea. Estuarine, Coastal and Shelf Science195, 41–50. 
https://doi.org/10.1016/j.ecss.2016.08.008  

Ratas, U., Rivis, R., Truus, L., Vilumaa, K., Multer, R. and Anderson, A. 2011. The aeolian coastal ecosystems of Estonia and their changes. Journal of Coastal Research64(SI), 430–434.

Raukas, A. 2000. Rapid changes of the Estonian coast during the late glacial and Holocene. Marine Geology170(1–2), 169–175. 
https://doi.org/10.1016/S0025-3227(00)00072-4  

Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C. et al. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon62(4), 725–757. 
https://doi.org/10.1017/RDC.2020.41  

Roberts, H. M. and Wintle, A. G. 2001. Equivalent dose deter­minations for polymineralic fine-grains using the SAR protocol: application to a Holocene sequence of the Chinese Loess Plateau. Quaternary Science Reviews20(5–9), 859–863. 
https://doi.org/10.1016/S0277-3791(00)00051-2  

Rosentau, A., Vassiljev, J., Hang, T., Saarse, L. and Kalm, V. 2009. Development of the Baltic Ice Lake in the eastern Baltic. Quaternary International206(1–2), 16–23. 
https://doi.org/10.1016/j.quaint.2008.10.005  

Rosentau, A., Jõeleht, A., Plado, J., Aunap, R., Muru, M. and Eskola, K. O. 2013. Development of the Holocene foredune plain in the Narva-Jõesuu area, eastern Gulf of Finland. Geological Quarterly57(1), 89–100.  

Rosentau, A., Nirgi, T., Muru, M., Bjursäter, S., Hang, T., Preusser, F. et al. 2020. Holocene relative shore level changes and Stone Age hunter-gatherers in Hiiumaa Island, eastern Baltic Sea. Boreas49(4), 783–798. 
https://doi.org/10.1111/bor.12452  

Różyński, G. 2023. Coastal protection challenges after heavy storms on the Polish coast. Continental Shelf Research266, 105080. 
https://doi.org/10.1016/j.csr.2023.105080  

Saarse, L., Vassiljev, J. and Rosentau, A. 2009. Ancylus Lake and Litorina Sea transition on the Island of Saaremaa, Estonia: a pilot study. Baltica22(1), 51–62.

Soomere, T., Jankowski, M. Z., Eelsalu, M., Parnell, K. E. and Viška, M. 2025. Alongshore sediment transport analysis for a semi-enclosed basin: a case study of the Gulf of Riga, the Baltic Sea. Ocean Science21(2), 619–641. 
https://doi.org/10.5194/os-21-619-2025  

Suuroja, S., Veski, A., Liira, M., Tuuling, I. and Ausmeel, M. 2020. 2019.–2020. aasta mererannikute seire tööd (Coastal monitoring work in 2019–2020). Aruanne. Eesti Geoloogiateenistus, Rakvere. 
https://kese.envir.ee/kese/downloadReportFile.action?fileUid=20443975&monitoringWorkUid=17723750 (accessed 2025-04-01).

Suursaar, Ü. 2023. Variations in wind velocity components and average air flow properties at Estonian coastal stations in 1966–2021; Sõrve Peninsula case study. Estonian Journal of Earth Sciences72(2), 197–210. 
https://doi.org/10.3176/earth.2023.85  

Suursaar, Ü. and Kall, T. 2018. Decomposition of relative sea level variations at tide gauges using results from four Estonian precise levelings and uplift models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing11(6), 1966–1974. 
https://doi.org/10.1109/JSTARS.2018.2805833  

Suursaar, Ü., Kullas, T., Otsmann, M., Saaremäe, I., Kuik, J. and Merilain, M. 2006. Cyclone Gudrun in January 2005 and modelling its hydrodynamic consequences in the Estonian coastal waters. Boreal Environment Research11, 143–159. 
https://www.borenv.net/BER/archive/pdfs/ber11/ber11-143.pdf  

Suursaar, Ü., Jaagus, J. and Tõnisson, H. 2015. How to quantify long-term changes in coastal sea storminess? Estuarine, Coastal and Shelf Science156, 31–41. 
https://doi.org/10.1016/j.ecss.2014.08.001  

Suursaar, Ü., Rosentau, A., Hang, T., Tõnisson, H., Tamura, T., Vaasma, T. et al. 2022. Climatically induced cyclicity recorded in the morphology of uplifting Tihu coastal ridgeplain, Hiiumaa Island, eastern Baltic Sea. Geomorphology404, 108187. 
https://doi.org/10.1016/j.geomorph.2022.108187  

Suursaar, Ü., Torn, K., Mäemets, H. and Rosentau, A. 2024. Overview and evolutionary path of Estonian coastal lagoons. Estuarine Coastal and Shelf Science303, 108811. 
https://doi.org/10.1016/j.ecss.2024.108811  

Suursaar, Ü., Luik, K., Mäll, M., Jaagus, J. and Tõnisson, H. 2025. Long-term variations in sea ice extent can influence trends in maximum sea level in the northeastern Baltic Sea. Continental Shelf Research289, 105451. 
https://doi.org/10.1016/j.csr.2025.105451  

Tamura, T. 2012. Beach ridges and prograded beach deposits as palaeoenvironment records. Earth-Science Reviews114(3–4), 279–297. 
https://doi.org/10.1016/j.earscirev.2012.06.004  

Tarand, A., Jaagus, J. and Kallis, A. 2013. Eesti kliima minevikus ja tänapäeval (Estonian Climate, Past and Present). University of Tartu Press, Tartu.

Tõnisson, H., Orviku, K., Jaagus, J., Suursaar, Ü., Kont, A. and Rivis, R. 2008. Coastal damages on Saaremaa Island, Estonia, caused by the extreme storm and flooding on January 9, 2005. Journal of Coastal Research24(3), 602–614. 
https://doi.org/10.2112/06-0631.1  

Tõnisson, H., Suursaar, Ü., Rivis, R., Tamura, T., Aarna, T., Vilumaa, K. et al. 2020. Characteristics and formation of a solitary dune belt encountered along the coast of Estonia. Journal of Coastal Research95(SP1), 689–694. 
https://doi.org/10.2112/SI95-134.1  

Tõnisson, H., Männikus, R., Vaasma, T. and Rohumägi, K. 2022. Nasva sadama tuuliku mõju setete liikumisele ja heljumi levik süvendamisel (The effect of the Nasva harbour windmill on sediment transport and turbidity dispersion during dredging). Report. Tallinn University, Institute of Ecology, Tallinn. 

Tõnisson, H., Kont, A., Suursaar, Ü., Jaagus, J., Rivis, R. and Buynevich, I. 2024a. Morphosedimentary evolution of Estonian coastline: role of climatic and hydrodynamic forcing over the past decades. Boreal Environment Research29(1–6), 103–125. 
https://www.borenv.net/BER/archive/pdfs/ber29/ber29-103-125.pdf  

Tõnisson, H., Luik, K., Suursaar, Ü., Buynevich, I., Kont, A., Männikus, R. et al. 2024b. Rapidly transforming Holocene strandplain, affected by port jetty and hydroclimatic shifts – natural laboratory of past and future shoreline behavior. Journal of Coastal Research113(SP1), 715–719. 
https://doi.org/10.2112/JCR-SI113-141.1  

Tõnisson, H., Männikus, R., Kont, A., Palginõmm, V., Alari, V., Suuroja, S. et al. 2024c. Application of shore sediments accumulated in navigation channel for restoration of sandy beaches around Pärnu city, SW Estonia, Baltic Sea. Journal of Marine Science and Engineering12(3), 394. 
https://doi.org/10.3390/jmse12030394

Tudyka, K., Miłosz, S., Adamiec, G., Bluszcz, A., Poręba, G., Paszkowski, Ł. et al. 2018. μDose: a compact system for en­vironmental radioactivity and dose rate measurement. Radiation Measurements118, 8–13.
https://doi.org/10.1016/j.radmeas.2018.07.016

Uścinowicz, G., Uścinowicz, S., Szarafin, T., Maszloch, E. and Wirkus, K. 2024. Rapid coastal erosion, its dynamics and cause – an erosional hot spot on the southern Baltic Sea coast. Oceanologia66(2), 250–266. 
https://doi.org/10.1016/j.oceano.2023.12.002  

Vaasma, T., Vandel, E., Sugita, S., Tõnisson, H., Suursaar, Ü., Kont, A. et al. 2025. Storminess reconstruction in the northeastern Baltic Sea region over the past 7600 years based on aeolian sand influx into coastal bogs. The Holocene35(1), 61–74. 
https://doi.org/10.1177/09596836241285783  

Vandel, E., Vaasma, T., Sugita, S., Tõnisson, H., Jaagus, J., Vilumaa, K. et al. 2019. Reconstruction of past storminess: evaluation of an indicator approach using aeolian mineral grains buried in peat deposits, Estonia. Quaternary Science Reviews218, 215–227. 
https://doi.org/10.1016/j.quascirev.2019.06.026  

Vestøl, O., Ågren, J., Steffen, H., Kierulf, H. and Tarasov, L. 2019. NKG2016LU: a new land uplift model for Fennoscandia and the Baltic Region. Journal of Geodesy93, 1759–1779. 
https://doi.org/10.1007/s00190-019-01280-8  

Vilumaa, K., Ratas, U., Tõnisson, H., Kont, A. and Pajula, R. 2017. Multidisciplinary approach to studying the formation and development of beach-ridge systems on non-tidal uplifting coasts in Estonia. Boreal Environment Research22, 67–81. 
https://www.borenv.net/BER/archive/pdfs/ber22/ber22-067-081-Vilumaa.pdf  

Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt, A. et al. 2021. Sea level dynamics and coastal erosion in the Baltic Sea region. Earth System Dynamics12(3), 871–898. 
https://doi.org/10.5194/esd-12-871-2021  

Willis, J., Hamlington, B. and Fournier, S. 2024. Global Mean Sea Level, Trajectory and Extrapolation
https://doi.org/10.5281/zenodo.7702314 (accessed 2025-04-01).

Back to Issue