SUPPLEMENTARY MATERIAL
This research focuses on the geochemical analysis of Paleoproterozoic metasedimentary and metavolcanic units in the Alutaguse region of northern Estonia, shedding light on the geodynamic evolution during the Svecofennian orogeny in eastern Fennoscandia. The metasedimentary units consist of micaceous gneisses (± Grt ± Crd ± Sil), and the metavolcanic units include amphibolites and pyroxenic gneisses. Geochemical analyses utilized both historical and new whole-rock geochemical data. Weathering indices indicated their applicability for provenance studies and tectonic setting analyses. Metasediments are classified by their silica content: high-SiO2 (>63 wt%) metasediments resemble litharenites, implying higher maturity and felsic origins akin to the upper continental crust reference; low-SiO2 (<63 wt%) metasediments align with graywackes and shales, indicative of mafic to intermediate origins, similar to the post-Archean Australian shale, with TiO2–Ni suggesting sedimentary trends. Discriminant tectonic parameters associated these metasedimentary groups with a continental rift domain. Total alkali-silica classified the metavolcanics as subalkaline units. Geochemical ratios, such as La/Yb vs. Zr/Nb and La/Sm vs. Sm/Yb, crossing the spinel-lherzolite trend, were closest to the primitive mantle reference. The Th/Nb and Th/Zr ratios revealed asthenospheric mantle origins for the basaltic magma sources in Alutaguse. Tectonic settings derived from Y/15–La/10–Nb/8 and TiO2–10(MnO)–10(P2O5) ratios suggested a predominant oceanic arc affinity. It is proposed here that the Alutaguse structural zone developed as the back-arc of the Tallinn–Uusimaa belt(s), following the accretion of the Bergslagen microcontinent at 1.9–1.87 Ga, concluding with the closure of the paleo-Svecofennian ocean.
All, T., Puura, V. and Vaher, R. 2004. Orogenic structures of the Precambrian basement of Estonia as revealed from the integrated modelling of the crust. In Proceedings of the Estonian Academy of Sciences, Geology, 53(3), 165–189.
https://doi.org/10.3176/geol.2004.3.03
Allen, R. L., Lundstrom, I., Ripa, M. and Christofferson, H. 1996. Facies analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen region, Sweden. Economic Geology, 91(6), 979–1008.
https://doi.org/10.2113/gsecongeo.91.6.979
Altherr, R., Holl, A., Hegner, E., Langer, C. and Kreuzer, H. 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1–3), 51–73.
https://doi.org/10.1016/S0024-4937(99)00052-3
Armstrong-Altrin, J., Lee, Y. I., Verma, S. P. and Ramasamy, S. 2004. Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 74(2), 285–297.
https://doi.org/10.1306/082803740285
Bailie, R., Gutzmer, J. and Rajesh, H. M. 2011. Petrography, geochemistry and geochronology of the metavolcanic rocks of the Mesoproterozoic Leerkrans Formation, Wilgenhoutsdrif Group, South Africa – back-arc basin to the Areachap volcanic arc. South African Journal of Geology, 114(2), 167–194.
https://doi.org/10.2113/gssajg.114.2.167
Baltybaev, S. K. 2013. Svecofennian orogen of the Fennoscandian Shield: compositional and isotopic zoning and its tectonic interpretation. Geotectonics, 47(6), 452–464.
https://doi.org/10.1134/S0016852113060022
Beunk, F. F. and Kuipers, G. 2012. The Bergslagen ore province, Sweden: review and update of an accreted orocline, 1.9–1.8 Ga BP. Precambrian Research, 216–219, 95–119.
https://doi.org/10.1016/j.precamres.2012.05.007
Bhatia, M. R. 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6), 611–627.
https://doi.org/10.1086/628815
Bhatia, M. R. and Crook, K. A. W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2), 181–193.
https://doi.org/10.1007/BF00375292
Bogdanova, S., Gorbatschev, R., Grad, M., Janik, T., Guterch, A., Kozlovskaya, E. et al. 2006. EUROBRIDGE: new insight into the geodynamic evolution of the East European Craton. Geological Society, London, Memoirs, 32(1), 599–625.
https://doi.org/10.1144/GSL.MEM.2006.032.01.36
Bogdanova, S., Gorbatschev, R., Skridlaite, G., Soesoo, A., Taran, L. and Kurlovich, D. 2015. Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/ Nuna. Precambrian Research, 259, 5–33.
https://doi.org/10.1016/j.precamres.2014.11.023
Casey, J. F., Banerji, D. and Zarian, P. 2007. Leg 179 synthesis: geochemistry, stratigraphy, and structure of gabbroic rocks drilled in ODP Hole 1105a, Southwest Indian Ridge. In Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 179 (Casey, J. F. and Miller, D. J., eds). College Station, Texas, 1–125.
https://doi.org/10.2973/odp.proc.sr.179.001.2007
Chaudhuri, S. and Cullers, R. L. 1979. The distribution of rare-earth elements in deeply buried Gulf Coast sediments. Chemical Geology, 24(3–4), 327–338.
https://doi.org/10.1016/0009-2541(79)90131-1
Chen, M., Sun, M., Cai, K., Buslov, M. M., Zhao, G. and Rubanova, E. S. 2014. Geochemical study of the Cambrian–Ordovician meta-sedimentary rocks from the northern Altai-Mongolian terrane, northwestern Central Asian Orogenic Belt: implications on the provenance and tectonic setting. Journal of Asian Earth Sciences, 96, 69–83.
https://doi.org/10.1016/j.jseaes.2014.08.028
Claesson, S., Bogdanova, S., Bibikova, E. and Gorbatschev, R. 2001. Isotopic evidence for Palaeoproterozoic accretion in the basement of the East European Craton. Tectonophysics, 339(1–2), 1–18.
https://doi.org/10.1016/S0040-1951(01)00031-2
Condie, K. C. 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology,104(1–4), 1–37.
https://doi.org/10.1016/0009-2541(93)90140-E
Condie, K. C. 2005. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos, 79(3–4), 491–504.
https://doi.org/10.1016/j.lithos.2004.09.014
Cox, R., Lowe, D. R. and Cullers, R. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14), 2919–2940.
https://doi.org/10.1016/0016-7037(95)00185-9
Cullers, R. L. 1994. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58(22), 4955–4972.
https://doi.org/10.1016/0016-7037(94)90224-0
Cullers, R. L., Bock, B. and Guidotti, C. 1997. Elemental distributions and neodymium isotopic compositions of Silurian metasediments, western Maine, USA: redistribution of the rare earth elements. Geochimica et Cosmochimica Acta, 61(9), 1847–1861.
https://doi.org/10.1016/S0016-7037(97)00048-3
de Carvalho Mendes, L., dos Santos, T. J. S. and Gomes, N. B. 2021. Geochemistry and provenance of the metasedimentary rocks surrounding the Santa Quitéria magmatic arc, NE Brazil: tectonic and paleogeographic implications for the assembly of West Gondwana. Precambrian Research, 356, 106063.
https://doi.org/10.1016/j.precamres.2020.106063
El-Bialy, M. Z. 2013. Geochemistry of the Neoproterozoic metasediments of Malhaq and Um Zariq formations, Kid metamorphic complex, Sinai, Egypt: implications for source-area weathering, provenance, recycling, and depositional tectonic setting. Lithos, 175–176, 68–85.
https://doi.org/10.1016/j.lithos.2013.05.002
Faisal, M., Yang, X., Khalifa, I. H., Amuda, A. K. and Sun, C. 2020. Geochronology and geochemistry of Neoproterozoic Hamamid metavolcanics hosting largest volcanogenic massive sulfide deposits in Eastern Desert of Egypt: implications for petrogenesis and tectonic evolution. Precambrian Research, 344, 105751.
https://doi.org/10.1016/j.precamres.2020.105751
Fedo, C. M., Nesbitt, H. W. and Young, G. M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), 921–924.
https://doi.org/10.1130/0091-7613(1995)023%3C0921:UTEOPM%3E2.3.CO;2
Fedo, C. M., Eriksson, K. A. and Krogstad, E. J. 1996. Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source-area weathering. Geochimica et Cosmochimica Acta, 60(10), 1751–1763.
https://doi.org/10.1016/0016-7037(96)00058-0
Feng, R. and Kerrich, R. 1990. Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: implications for provenance and tectonic setting. Geochimica et Cosmochimica Acta, 54(4), 1061–1081.
https://doi.org/10.1016/0016-7037(90)90439-R
Fitton, J. G., Saunders, A. D., Norry, M. J., Hardarson, B. S. and Taylor, R. N. 1997. Thermal and chemical structure of the Iceland plume. Earth and Planetary Science Letters, 153(3–4), 197–208.
https://doi.org/10.1016/S0012-821X(97)00170-2
Floyd, P. A., Winchester, J. A. and Park, R. G. 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research, 45(1–3), 203–214.
https://doi.org/10.1016/0301-9268(89)90040-5
Gao, S. and Wedepohl, K. H. 1995. The negative Eu anomaly in Archean sedimentary rocks: implications for decomposition, age and importance of their granitic sources. Earth and Planetary Science Letters, 133(1–2), 81–94.
https://doi.org/10.1016/0012-821X(95)00077-P
Gao, S., Ling, W., Qiu, Y., Lian, Z., Hartmann, G. and Simon, K. 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta, 63(13–14), 2071–2088.
https://doi.org/10.1016/S0016-7037(99)00153-2
Garcia, D., Fonteilles, M. and Moutte, J. 1994. Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites. The Journal of Geology, 102(4), 411–422.
https://doi.org/10.1086/629683
Gu, X. X., Liu, J. M., Zheng, M. H., Tang, J. X. and Qi, L. 2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: geochemical evidence. Journal of Sedimentary Research, 72(3), 393–407.
https://doi.org/10.1306/081601720393
Han, Z.-Z., Zhong, W.-J., Song, Z.-G., Han, C., Han, M., Gao, L.-H. et al. 2019. Geochronology and geochemistry of metasedimentary rocks from the Dongnancha Formation in the Huadian area, central Jilin Province, Northeast (NE) China: implications for the tectonic evolution of the eastern segment of the Paleo-Asian Ocean. Geochemistry, 79(1), 94–112.
https://doi.org/10.1016/j.geoch.2018.12.002
Harker, A. 1909. The Natural History of Igneous Rocks. Macmillan, New York.
https://doi.org/10.2307/1777000
Harnois, L. 1988. The CIW index: a new chemical index of weathering. Sedimentary Geology, 55(3–4), 319–322.
https://doi.org/10.1016/0037-0738(88)90137-6
Hart, S. R. 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 90(3), 273–296.
https://doi.org/10.1016/0012-821X(88)90131-8
Hayashi, K.-I., Fujisawa, H., Holland, H. D. and Ohmoto, H. 1997. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19), 4115–4137.
https://doi.org/10.1016/S0016-7037(97)00214-7
Herron, M. M. 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58(5), 820–829.
https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D
Ishikawa, Y., Sawaguchi, T., Iwaya, S. and Horiushi, M. 1976. Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration haloes. Mining Geology, 26(136), 105–117.
https://doi.org/10.11456/shi genchishitsu1951.26.105
Jensen, L. S. 1976. A New Cation Plot for Classifying Subalkalic Volcanic Rocks, Vol. 66. Ministry of Natural Resources, Toronto.
Jian, X., Guan, P., Zhang, W. and Feng, F. 2013. Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam Basin, northeastern Tibetan Plateau: implications for provenance and weathering. Chemical Geology, 360–361, 74–88.
https://doi.org/10.1016/j.chemgeo.2013.10.011
Kähkönen, Y. 2005. Svecofennian supracrustal rocks. In Developments in Precambrian Geology, Vol. 14 (Lehtinen, M., Nurmi, P. A. and Rämö, O. T., eds). Elsevier, 343–405.
https://doi.org/10.1016/S0166-2635(05)80009-X
Kara, J. 2021. Evolution of the Svecofennian bedrock in southern Finland: spatial and temporal changes in the mantle-derived magmatism and mantle-crust interaction. PhD thesis. University of Turku, Finland.
Kara, J., Leskelä, T., Väisänen, M., Skyttä, P., Lahaye, Y., Tiainen, M. and Leväniemi, H. 2021. Early Svecofennian rift-related magmatism: geochemistry, U-Pb-Hf zircon isotope data and tectonic setting of the Au-hosting Uunimäki gabbro, SW Finland. Precambrian Research, 364, 106364.
https://doi.org/10.1016/j.precamres.2021.106364
Karakaş, A. and Güçtekin, A. 2021. Evaluation of physico-mechanical properties with petrographic characteristics of Hisartepe volcanic rocks (Söke-western Anatolia) based on alteration indices. Arabian Journal of Geosciences, 14(12), 1117.
https://doi.org/10.1007/s12517-021-07086-3
Kirs, J. and Petersell, V. 1994. Age and geochemical character of plagiomicrocline granite veins in the Abja gabbrodioritic massif. Acta et Commentationes Universitatis Tartuensis, 972, 3–15.
Kirs, J., Puura, V., Soesoo, A., Klein, V., Konsa, M., Koppelmaa, H. et al. 2009. The crystalline basement of Estonia: rock complexes of the Palaeoproterozoic Orosirian and Statherian and Mesoproterozoic Calymmian periods, and regional correlations. Estonian Journal of Earth Sciences, 58(4), 219–228.
http://dx.doi.org/10.3176/earth.2009.4.01
Kivisilla, J., Niin, M. and Koppelmaa, H. 1999. Catalogue of Chemical Analyses of Major Elements in the Rocks of the Crystalline Basement of Estonia. Geological Survey of Estonia, Tallinn.
Klein, V. 1986. Метаморфический комплекс свекофеннского пояса в Северной Эстонии (Metamorphic Complex of the Svecofennian Belt in Northern Estonia). PhD thesis. Leningrad State University, Russia.
Korja, A., Korja, T., Luosto, U. and Heikkinen, P. 1993. Seismic and geoelectric evidence for collisional and extensional events in the Fennoscandian Shield: implications for Precambrian crustal evolution. Tectonophysics, 219(1–3), 129–152.
https://doi.org/10.1016/0040-1951(93)90292-R
Korja, A., Lahtinen, R., Heikkinen, P., Kukkonen, I. and Fire Working Group. 2003. A tectonic model for Paleoproterozoic crocodile structures at Karelian Svecofennian boundary – results from FIRE-1 and BABEL2 & 3. In EGS-AGU-EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6–11 April 2003, abstract id. 2801.
Kukkonen, I. and Lauri, L. 2009. Modelling the thermal evolution of a collisional Precambrian orogen: high heat production migmatitic granites of southern Finland. Precambrian Research, 168(3–4), 233–246.
https://doi.org/10.1016/j.precamres.2008.10.004
Lahtinen, R. 2000. Archaean–Proterozoic transition: geochemistry, provenance and tectonic setting of metasedimentary rocks in central Fennoscandian Shield, Finland. Precambrian Research, 104(3–4), 147–174.
https://doi.org/10.1016/S0301-9268(00)00087-5
Lahtinen, R. and Nironen, M. 2010. Paleoproterozoic lateritic paleosol–ultra-mature/mature quartzite–meta-arkose successions in southern Fennoscandia – intra-orogenic stage during the Svecofennian orogeny. Precambrian Research, 183(4), 770–790.
https://doi.org/10.1016/j.precamres.2010.09.006
Lahtinen, R., Huhma, H. and Kousa, J. 2002. Contrasting source components of the Paleoproterozoic Svecofennian metasediments: detrital zircon U–Pb, Sm–Nd and geochemical data. Precambrian Research, 116(1–2), 81–109.
https://doi.org/10.1016/S0301-9268(02)00018-9
Lahtinen, R., Korja, A. and Nironen, M. 2005. Paleoproterozoic tectonic evolution. In Developments in Precambrian Geology, Vol. 14 (Lehtinen, M., Nurmi, P. A. and Rämö, O. T., eds). Elsevier, 481–531.
https://doi.org/10.1016/S0166-2635(05)80012-X
Lahtinen, R., Garde, A. A. and Melezhik, V. A. 2008. Paleoproterozoic evolution of Fennoscandia and Greenland. Episodes: Journal of International Geoscience, 31(1), 20–28.
https://doi.org/10.18814/epiiugs/2008/v31i1/004
Lahtinen, R., Korja, A., Nironen, M. and Heikkinen, P. 2009. Palaeoproterozoic accretionary processes in Fennoscandia. Geological Society, London, Special Publications, 318(1), 237–256.
https://doi.org/10.1144/SP318.8
Lahtinen, R., Huhma, H., Kontinen, A., Kohonen, J. and Sorjonen-Ward, P. 2010. New constraints for the source characteristics, deposition and age of the 2.1–1.9 Ga metasedimentary cover at the western margin of the Karelian Province. Precambrian Research, 176(1–4), 77–93.
https://doi.org/10.1016/j.precamres.2009.10.001
Lahtinen, R., Hölttä, P., Kontinen, A., Niiranen, T., Nironen, M., Saalmann, K. and Sorjonen-Ward, P. 2011. Tectonic and metallogenic evolution of the Fennoscandian shield: key questions with emphasis on Finland. Geological Survey of Finland, Special Paper, 49, 23–33.
Lahtinen, R., Huhma, H., Sipilä, P. and Vaarma, M. 2017. Geochemistry, U-Pb geochronology and Sm-Nd data from the Paleoproterozoic Western Finland supersuite – a key component in the coupled Bothnian oroclines. Precambrian Research, 299, 264–281.
https://doi.org/10.1016/j.precamres.2017.07.025
Lahtinen, R., Salminen, P. E., Sayab, M., Huhma, H., Kurhila, M. and Johnston, S. T. 2022. Age and structural constraints on the tectonic evolution of the Paleoproterozoic Saimaa orocline in Fennoscandia. Precambrian Research, 369, 106477.
https://doi.org/10.1016/j.precamres.2021.106477
Large, R. R., Gemmell, J. B., Paulick, H. and Huston, D. L. 2001. The alteration box plot: a simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Economic Geology, 96(5), 957–971.
https://doi.org/10.2113/gsecongeo.96.5.957
Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. and Zanettin, B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3), 745–750.
https://doi.org/10.1093/petrology/27.3.745
Ma, L.-T., Dai, L.-Q., Zheng, Y.-F., Zhao, Z.-F., Fang, W., Zhao, K. et al. 2021. Geochemical distinction between altered oceanic basalt- and seafloor sediment-derived fluids in the mantle source of mafic igneous rocks in southwestern Tianshan, western China. Journal of Petrology, 62(1), egab014.
https://doi.org/10.1093/petrology/egab014
MacLean, W. and Hoy, L. D. 1991. Geochemistry of hydrothermally altered rocks at the Horne Mine, Noranda, Quebec. Economic Geology, 86(3), 506–528.
https://doi.org/10.2113/gsecongeo.86.3.506
McDonough, W. F. and Frey, F. A. 1989. Rare earth elements in upper mantle rocks. In Geochemistry and Mineralogy of Rare Earth Elements (Lipin, B. R. and McKay, G. A., eds). De Gruyter, Berlin, Boston, 99–145.
https://doi.org/10.1515/9781501509032-008
McLennan, S. M. 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In Geochemistry and Mineralogy of Rare Earth Elements (Lipin, B. R. and McKay, G. A., eds). De Gruyter, Berlin, Boston, 169–200.
https://doi.org/10.1515/9781501509032-010
McLennan, S. M. 1993. Weathering and global denudation. The Journal of Geology, 101(2), 295–303.
https://doi.org/10.1086/648222
McLennan, S. M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2(4).
https://doi.org/10.1029/2000GC000109
McLennan, S. M. and Taylor, S. R. 1991. Sedimentary rocks and crustal evolution: tectonic setting and secular trends. The Journal of Geology, 99(1), 1–21.
https://doi.org/10.1086/629470
McLennan, S. M., Taylor, S. R., McCulloch, M. T. and Maynard, J. B. 1990. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54(7), 2015–2050.
https://doi.org/10.1016/0016-7037(90)90269-Q
McLennan, S. M., Hemming, S. R., McDaniel, D. K. and Hanson, G. N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. In Processes Controlling the Composition of Clastic Sediments (Johnsson, M. J. and Basu, A., eds). Geological Society of America, Boulder, Colorado, 21–40.
https://doi.org/10.1130/SPE284-p21
McLennan, S. M., Hemming, S. R., Taylor, S. R. and Eriksson, K. A. 1995. Early Proterozoic crustal evolution: geochemical and Nd–Pb isotopic evidence from metasedimentary rocks, southwestern North America. Geochimica et Cosmochimica Acta, 59(6), 1153–1177.
https://doi.org/10.1016/0016-7037(95)00032-U
Mikkola, P., Mönkäre, K., Ahven, M. and Huhma, H. 2018. Geochemistry and age of the Paleoproterozoic Makkola suite volcanic rocks in central Finland. In Development of the Paleoproterozoic Svecofennian Orogeny: New Constraints from the Southeastern Boundary of the Central Finland Granitoid Complex (Mikkola, P., Hölttä, P. and Käpyaho, A., eds). Geological Survey of Finland, Bulletin, 407, 85–105.
http://doi.org/10.30 440/bt407.5
Nesbitt, H. W. and Young, G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.
https://doi.org/10.1038/299715a0
Nirgi, S. and Soesoo, A. 2021. Geology and geochemistry of a Paleoproterozoic iron mineralization in North-Eastern Estonia. Proceedings of the Karelian Research Centre of the Russian Academy of Sciences, 10, 25–43.
https://doi.org/10.17076/geo1492
Nironen, M. 2017. Bedrock of Finland at the Scale 1:1000000 – Major Stratigraphic Units, Metamorphism and Tectonic Evolution. Geological Survey of Finland, Espoo.
Parker, A. 1970. An index of weathering for silicate rocks. Geological Magazine, 107(6), 501–504.
https://doi.org/10.1017/S0016756800058581
Patiño Douce, A. E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society, London, Special Publications, 168(1), 55–75.
https://doi.org/10.1144/GSL.SP.1999.168.01.05
Pearce, J. A. 1996. A user’s guide to basalt discrimination diagrams. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration (Wyman, D. A., ed.). Geological Association of Canada, St. John’s, 79–113.
Pearce, J. A. and Norry, M. J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1), 33–47.
https://doi.org/10.1007/BF00375192
Pesonen, L. J., Salminen, J., Elming, S.-Å., Evans, D. A. D. and Veikkolainen, T. 2021. Ancient Supercontinents and the Paleogeography of Earth. Elsevier, Amsterdam.
https://doi.org/10.1016/C2018-0-03855-4
Petersell, V. and Levchenkov, O. 1994. On the geological structure of the crystalline basement of the southern slope of the Baltic Shield. Acta et Commentationes Universitatis Tartuensis, 972(14), 16–39.
Pettijohn, F. J., Potter, P. E. and Siever, R. 1987. Sedimentary structures and bedding. In Sand and Sandstone. Springer, New York.
https://doi.org/10.1007/978-1-4612-1066-5_4
Puura, V. and Huhma, H. 1993. Palaeoproterozoic age of the East Baltic granulitic crust. Precambrian Research, 64(1–4), 289–294.
https://doi.org/10.1016/0301-9268(93)90082-D
Puura, V., Vaher, R., Klein, V., Koppelmaa, H., Niin, M., Vanamb, V. and Kirs, J. 1983. Кристаллический фундамент Эстонии (The Crystalline Basement of Estonian Territory). Nauka, Moscow.
Puura, V., Hints, R., Huhma, H., Klein, V., Konsa, M., Kuldkepp, R. et al. 2004. Svecofennian metamorphic zones in the basement of Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 53(3), 190–209.
https://doi.org/10.3176/geol.2004.3.04
Rämö, O. T., Turkki, V., Mänttäri, I., Heinonen, A., Larjamo, K. and Lahaye, Y. 2014. Age and isotopic fingerprints of some plutonic rocks in the Wiborg rapakivi granite batholith with special reference to the dark wiborgite of the Ristisaari Island. Bulletin of the Geological Society of Finland, 86, 71–91.
https://doi.org/10.17741/bgsf/86.2.002
Rasilainen, K., Lahtinen, R. and Bornhorst, T. J. 2007. The Rock Geochemical Database of Finland: Manual. Geological Survey of Finland, Espoo.
Roser, B. P. and Korsch, R. J. 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology, 94(5), 635–650.
https://doi.org/10.1086/629071
Roser, B. P. and Korsch, R. J. 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67(1–2), 119–139.
http://dx.doi.org/10.1016/0009-2541(88)90010-1
Rudnick, R. L. and Gao, S. 2003. Composition of the continental crust. In Treatise on Geochemistry, Vol. 3 (Holland, H. D. and Turekian, K. K., eds). Elsevier, Amsterdam, 1–64.
https://doi.org/10.1016/B0-08-043751-6/03016-4
Saccani, E. 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers, 6(4), 481–501.
https://doi.org/10.1016/j.gsf.2014.03.006
Saccani, E., Delavari, M., Dolati, A., Marroni, M., Pandolfi, L., Chiari, M. and Barbero, E. 2018. New insights into the geodynamics of Neo-Tethys in the Makran area: evidence from age and petrology of ophiolites from the Coloured Mélange Complex (SE Iran). Gondwana Research, 62, 306–327.
https://doi.org/10.1016/j.gr.2017.07.013
Shand, S. J. 1943. Eruptive Rocks: Their Genesis, Composition, and Classification, with a Chapter on Meteorites. John Wiley & Sons, New York.
Sifeta, K., Roser, B. P. and Kimura, J.-I. 2005. Geochemistry, provenance, and tectonic setting of Neoproterozoic metavolcanic and metasedimentary units, Werri area, northern Ethiopia. Journal of African Earth Sciences, 41(3), 212–234.
https://doi.org/10.1016/j.jafrearsci.2005.04.004
Skridlaite, G. and Motuza, G. 2001. Precambrian domains in Lithuania: evidence of terrane tectonics. Tectonophysics, 339(1–2), 113–133.
https://doi.org/10.1016/S0040-1951(01)00035-X
Skridlaite, G., Willingshofer, E. and Stephenson, R. 2003. P–T–t modelling of Proterozoic terranes in Lithuania: geodynamic implications for accretion of southwestern Fennoscandia. GFF, 125(4), 201–211.
https://doi.org/10.1080/11035890301254201
Soesoo, A. and Hade, S. 2012. Geochemistry and age of some A-type granitoid rocks of Estonia. In Lithosphere 2012: Seventh Symposium on the Structure, Composition and Evolution of the Lithosphere in Finland, Espoo, Finland, 6–8 November 2012 (Kukkonen, I., Kosonen, E., Oinonen, K., Eklund, O., Korja, A., Korja, T. et al., eds). Institute of Seismology, Helsinki, 97–100.
Soesoo, A., Puura, V., Kirs, J., Petersell, V., Niin, M. and All, T. 2004. Outlines of the Precambrian basement of Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 53(3), 149–164.
https://doi.org/10.3176/geol.2004.3.02
Soesoo, A., Košler, J. and Kuldkepp, R. 2006. Age and geochemical constraints for partial melting of granulites in Estonia. Mineralogy and Petrology, 86, 277–300.
https://doi.org/10.1007/s00710-005-0110-8
Soesoo, A., Nirgi, S. and Plado, J. 2020. The evolution of the Estonian Precambrian basement: geological, geophysical and geochronological constraints. Proceedings of the Karelian Research Centre of the Russian Academy of Sciences, 2, 18–33.
https://doi.org/10.17076/geo1185
Solano-Acosta, J. D., Soesoo, A. and Hints, R. 2023. New insights of the crustal structure across Estonia using satellite potential fields derived from WGM-2012 gravity data and EMAG2v3 magnetic data. Tectonophysics, 846, 229656.
https://doi.org/10.1016/j.tecto.2022.229656
Stephens, M. B. and Weihed, J. B. 2020. Sweden: lithotectonic framework, tectonic evolution and mineral resources. Geological Society, London, Memoirs, 50.
https://doi.org/10.1144/M50
Sun, S. S. and McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313–345.
https://doi.org/10.1144/GSL.SP.1989.042.01.19
Taylor, S. R. and McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
Verma, S. P. and Armstrong-Altrin, J. S. 2013. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–133.
https://doi.org/10.1016/j.chemgeo.2013.07.014
Wan, L., Zeng, Z., Kusky, T., Asimow, P., He, C., Liu, Y. et al. 2019. Geochemistry of middle-late Mesozoic mafic intrusions in the eastern North China Craton: new insights on lithospheric thinning and decratonization. Gondwana Research, 73, 153–174.
https://doi.org/10.1016/j.gr.2019.04.004
Wood, D. A. 1980. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1), 11–30.
https://doi.org/10.1016/0012-821X(80)90116-8
Yang, G., Li, Y., Xiao, W., Sun, Y. and Tong, L. 2014. Petrogenesis and tectonic implications of the middle Silurian volcanic rocks in northern West Junggar, NW China. International Geology Review, 56(7), 869–884.
https://doi.org/10.1080/00206814.2014.905214