ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Research article
Geochemistry, provenance, and tectonic setting of Paleoproterozoic metasedimentary and metavolcanic units of the Estonian Alutaguse region, eastern Fennoscandia; pp. 61–82
PDF | 10.3176/earth.2025.05

SUPPLEMENTARY MATERIAL

Authors
Juan David Solano-Acosta ORCID Icon, Alvar Soesoo ORCID Icon, Rutt Hints ORCID Icon
Abstract

This research focuses on the geochemical analysis of Paleoproterozoic metasedimentary and metavolcanic units in the Alutaguse region of northern Estonia, shedding light on the geodynamic evolution during the Svecofennian orogeny in eastern Fennoscandia. The metasedimentary units consist of micaceous gneisses (± Grt ± Crd ± Sil), and the metavolcanic units include amphibolites and pyroxenic gneisses. Geochemical analyses utilized both historical and new whole-rock geochemical data. Weathering indices indicated their applicability for provenance studies and tectonic setting analyses. Metasediments are classified by their silica content: high-SiO2 (>63 wt%) metasediments resemble litharenites, implying higher maturity and felsic origins akin to the upper continental crust reference; low-SiO2 (<63 wt%) metasediments align with graywackes and shales, indicative of mafic to intermediate origins, similar to the post-Archean Australian shale, with TiO2–Ni suggesting sedimentary trends. Discriminant tectonic parameters associated these metasedimentary groups with a continental rift domain. Total alkali-silica classified the metavolcanics as subalkaline units. Geochemical ratios, such as La/Yb vs. Zr/Nb and La/Sm vs. Sm/Yb, crossing the spinel-lherzolite trend, were closest to the primitive mantle reference. The Th/Nb and Th/Zr ratios revealed asthenospheric mantle origins for the basaltic magma sources in Alutaguse. Tectonic settings derived from Y/15–La/10–Nb/8 and TiO2–10(MnO)–10(P2O5) ratios suggested a predominant oceanic arc affinity. It is proposed here that the Alutaguse structural zone developed as the back-arc of the Tallinn–Uusimaa belt(s), following the accretion of the Bergslagen microcontinent at 1.9–1.87 Ga, concluding with the closure of the paleo-Svecofennian ocean.

References

All, T., Puura, V. and Vaher, R. 2004. Orogenic structures of the Precambrian basement of Estonia as revealed from the integrated modelling of the crust. In Proceedings of the Estonian Academy of Sciences, Geology53(3), 165–189. 
https://doi.org/10.3176/geol.2004.3.03

Allen, R. L., Lundstrom, I., Ripa, M. and Christofferson, H. 1996. Facies analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen region, Sweden. Economic Geology91(6), 979–1008. 
https://doi.org/10.2113/gsecongeo.91.6.979

Altherr, R., Holl, A., Hegner, E., Langer, C. and Kreuzer, H. 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos50(1–3), 51–73. 
https://doi.org/10.1016/S0024-4937(99)00052-3

Armstrong-Altrin, J., Lee, Y. I., Verma, S. P. and Ramasamy, S. 2004. Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research74(2), 285–297. 
https://doi.org/10.1306/082803740285  

Bailie, R., Gutzmer, J. and Rajesh, H. M. 2011. Petrography, geochemistry and geochronology of the metavolcanic rocks of the Mesoproterozoic Leerkrans Formation, Wilgenhoutsdrif Group, South Africa – back-arc basin to the Areachap volcanic arc. South African Journal of Geology114(2), 167–194. 
https://doi.org/10.2113/gssajg.114.2.167  

Baltybaev, S. K. 2013. Svecofennian orogen of the Fennoscandian Shield: compositional and isotopic zoning and its tectonic inter­pretation. Geotectonics47(6), 452–464. 
https://doi.org/10.1134/S0016852113060022

Beunk, F. F. and Kuipers, G. 2012. The Bergslagen ore province, Sweden: review and update of an accreted orocline, 1.9–1.8 Ga BP. Precambrian Research216–219, 95–119. 
https://doi.org/10.1016/j.precamres.2012.05.007

Bhatia, M. R. 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology91(6), 611–627. 
https://doi.org/10.1086/628815  

Bhatia, M. R. and Crook, K. A. W. 1986. Trace element char­acteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology92(2), 181–193. 
https://doi.org/10.1007/BF00375292

Bogdanova, S., Gorbatschev, R., Grad, M., Janik, T., Guterch, A., Kozlovskaya, E. et al. 2006. EUROBRIDGE: new insight into the geodynamic evolution of the East European Craton. Geological Society, London, Memoirs32(1), 599–625. 
https://doi.org/10.1144/GSL.MEM.2006.032.01.36  

Bogdanova, S., Gorbatschev, R., Skridlaite, G., Soesoo, A., Taran, L. and Kurlovich, D. 2015. Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/ Nuna. Precambrian Research259, 5–33. 
https://doi.org/10.1016/j.precamres.2014.11.023  

Casey, J. F., Banerji, D. and Zarian, P. 2007. Leg 179 synthesis: geochemistry, stratigraphy, and structure of gabbroic rocks drilled in ODP Hole 1105a, Southwest Indian Ridge. In Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 179 (Casey, J. F. and Miller, D. J., eds). College Station, Texas, 1–125. 
https://doi.org/10.2973/odp.proc.sr.179.001.2007  

Chaudhuri, S. and Cullers, R. L. 1979. The distribution of rare-earth elements in deeply buried Gulf Coast sediments. Chemical Geology24(3–4), 327–338. 
https://doi.org/10.1016/0009-2541(79)90131-1

Chen, M., Sun, M., Cai, K., Buslov, M. M., Zhao, G. and Rubanova, E. S. 2014. Geochemical study of the Cambrian–Ordovician meta-sedimentary rocks from the northern Altai-Mongolian terrane, north­western Central Asian Orogenic Belt: implications on the provenance and tectonic setting. Journal of Asian Earth Sciences96, 69–83. 
https://doi.org/10.1016/j.jseaes.2014.08.028  

Claesson, S., Bogdanova, S., Bibikova, E. and Gorbatschev, R. 2001. Isotopic evidence for Palaeoproterozoic accretion in the basement of the East European Craton. Tectonophysics339(1–2), 1–18. 
https://doi.org/10.1016/S0040-1951(01)00031-2  

Condie, K. C. 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology,104(1–4), 1–37. 
https://doi.org/10.1016/0009-2541(93)90140-E  

Condie, K. C. 2005. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos79(3–4), 491–504. 
https://doi.org/10.1016/j.lithos.2004.09.014  

Cox, R., Lowe, D. R. and Cullers, R. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta59(14), 2919–2940. 
https://doi.org/10.1016/0016-7037(95)00185-9  

Cullers, R. L. 1994. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta58(22), 4955–4972. 
https://doi.org/10.1016/0016-7037(94)90224-0  

Cullers, R. L., Bock, B. and Guidotti, C. 1997. Elemental distributions and neodymium isotopic compositions of Silurian metasediments, western Maine, USA: redistribution of the rare earth elements. Geochimica et Cosmochimica Acta61(9), 1847–1861. 
https://doi.org/10.1016/S0016-7037(97)00048-3

de Carvalho Mendes, L., dos Santos, T. J. S. and Gomes, N. B. 2021. Geochemistry and provenance of the metasedimentary rocks sur­rounding the Santa Quitéria magmatic arc, NE Brazil: tectonic and paleogeographic implications for the assembly of West Gondwana. Precambrian Research356, 106063. 
https://doi.org/10.1016/j.precamres.2020.106063  

El-Bialy, M. Z. 2013. Geochemistry of the Neoproterozoic metasediments of Malhaq and Um Zariq formations, Kid meta­morphic complex, Sinai, Egypt: implications for source-area weathering, provenance, recycling, and depositional tectonic setting. Lithos175–176, 68–85. 
https://doi.org/10.1016/j.lithos.2013.05.002

Faisal, M., Yang, X., Khalifa, I. H., Amuda, A. K. and Sun, C. 2020. Geochronology and geochemistry of Neoproterozoic Hamamid metavolcanics hosting largest volcanogenic massive sulfide deposits in Eastern Desert of Egypt: implications for petrogenesis and tectonic evolution. Precambrian Research344, 105751. 
https://doi.org/10.1016/j.precamres.2020.105751  

Fedo, C. M., Nesbitt, H. W. and Young, G. M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology23(10), 921–924. 
https://doi.org/10.1130/0091-7613(1995)023%3C0921:UTEOPM%3E2.3.CO;2  

Fedo, C. M., Eriksson, K. A. and Krogstad, E. J. 1996. Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source-area weathering. Geochimica et Cosmochimica Acta60(10), 1751–1763. 
https://doi.org/10.1016/0016-7037(96)00058-0

Feng, R. and Kerrich, R. 1990. Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: implications for provenance and tectonic setting. Geochimica et Cosmochimica Acta54(4), 1061–1081. 
https://doi.org/10.1016/0016-7037(90)90439-R  

Fitton, J. G., Saunders, A. D., Norry, M. J., Hardarson, B. S. and Taylor, R. N. 1997. Thermal and chemical structure of the Iceland plume. Earth and Planetary Science Letters153(3–4), 197–208. 
https://doi.org/10.1016/S0012-821X(97)00170-2  

Floyd, P. A., Winchester, J. A. and Park, R. G. 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research45(1–3), 203–214. 
https://doi.org/10.1016/0301-9268(89)90040-5

Gao, S. and Wedepohl, K. H. 1995. The negative Eu anomaly in Archean sedimentary rocks: implications for decomposition, age and importance of their granitic sources. Earth and Planetary Science Letters133(1–2), 81–94. 
https://doi.org/10.1016/0012-821X(95)00077-P

Gao, S., Ling, W., Qiu, Y., Lian, Z., Hartmann, G. and Simon, K. 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta63(13–14), 2071–2088. 
https://doi.org/10.1016/S0016-7037(99)00153-2  

Garcia, D., Fonteilles, M. and Moutte, J. 1994. Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites. The Journal of Geology102(4), 411–422. 
https://doi.org/10.1086/629683

Gu, X. X., Liu, J. M., Zheng, M. H., Tang, J. X. and Qi, L. 2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: geochemical evidence. Journal of Sedimentary Research72(3), 393–407. 
https://doi.org/10.1306/081601720393

Han, Z.-Z., Zhong, W.-J., Song, Z.-G., Han, C., Han, M., Gao, L.-H. et al. 2019. Geochronology and geochemistry of metasedimentary rocks from the Dongnancha Formation in the Huadian area, central Jilin Province, Northeast (NE) China: implications for the tectonic evolution of the eastern segment of the Paleo-Asian Ocean. Geochemistry79(1), 94–112. 
https://doi.org/10.1016/j.geoch.2018.12.002

Harker, A. 1909. The Natural History of Igneous Rocks. Macmillan, New York. 
https://doi.org/10.2307/1777000

Harnois, L. 1988. The CIW index: a new chemical index of weath­ering. Sedimentary Geology55(3–4), 319–322. 
https://doi.org/10.1016/0037-0738(88)90137-6

Hart, S. R. 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth and Planetary Science Letters90(3), 273–296. 
https://doi.org/10.1016/0012-821X(88)90131-8

Hayashi, K.-I., Fujisawa, H., Holland, H. D. and Ohmoto, H. 1997. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta61(19), 4115–4137. 
https://doi.org/10.1016/S0016-7037(97)00214-7

Herron, M. M. 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research58(5), 820–829. 
https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D  

Ishikawa, Y., Sawaguchi, T., Iwaya, S. and Horiushi, M. 1976. Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration haloes. Mining Geology26(136), 105–117. 
https://doi.org/10.11456/shi genchishitsu1951.26.105

Jensen, L. S. 1976. A New Cation Plot for Classifying Subalkalic Volcanic Rocks, Vol. 66. Ministry of Natural Resources, Toronto.

Jian, X., Guan, P., Zhang, W. and Feng, F. 2013. Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam Basin, northeastern Tibetan Plateau: implications for provenance and weathering. Chemical Geology360–361, 74–88. 
https://doi.org/10.1016/j.chemgeo.2013.10.011

Kähkönen, Y. 2005. Svecofennian supracrustal rocks. In Developments in Precambrian Geology, Vol. 14 (Lehtinen, M., Nurmi, P. A. and Rämö, O. T., eds). Elsevier, 343–405. 
https://doi.org/10.1016/S0166-2635(05)80009-X

Kara, J. 2021. Evolution of the Svecofennian bedrock in southern Finland: spatial and temporal changes in the mantle-derived magmatism and mantle-crust interaction. PhD thesis. University of Turku, Finland.

Kara, J., Leskelä, T., Väisänen, M., Skyttä, P., Lahaye, Y., Tiainen, M. and Leväniemi, H. 2021. Early Svecofennian rift-related magmatism: geochemistry, U-Pb-Hf zircon isotope data and tectonic setting of the Au-hosting Uunimäki gabbro, SW Finland. Precambrian Research364, 106364. 
https://doi.org/10.1016/j.precamres.2021.106364  

Karakaş, A. and Güçtekin, A. 2021. Evaluation of physico-mechanical properties with petrographic characteristics of Hisartepe volcanic rocks (Söke-western Anatolia) based on alteration indices. Arabian Journal of Geosciences14(12), 1117. 
https://doi.org/10.1007/s12517-021-07086-3

Kirs, J. and Petersell, V. 1994. Age and geochemical character of plagiomicrocline granite veins in the Abja gabbrodioritic massif. Acta et Commentationes Universitatis Tartuensis972, 3–15.

Kirs, J., Puura, V., Soesoo, A., Klein, V., Konsa, M., Koppelmaa, H. et al. 2009. The crystalline basement of Estonia: rock complexes of the Palaeoproterozoic Orosirian and Statherian and Mesoproterozoic Calymmian periods, and regional correlations. Estonian Journal of Earth Sciences58(4), 219–228. 
http://dx.doi.org/10.3176/earth.2009.4.01  

Kivisilla, J., Niin, M. and Koppelmaa, H. 1999. Catalogue of Chemical Analyses of Major Elements in the Rocks of the Crystalline Basement of Estonia. Geological Survey of Estonia, Tallinn.

Klein, V. 1986. Метаморфический комплекс свекофеннского пояса в Северной Эстонии (Metamorphic Complex of the Svecofennian Belt in Northern Estonia). PhD thesis. Leningrad State University, Russia.

Korja, A., Korja, T., Luosto, U. and Heikkinen, P. 1993. Seismic and geoelectric evidence for collisional and extensional events in the Fennoscandian Shield: implications for Precambrian crustal evo­lution. Tectonophysics219(1–3), 129–152. 
https://doi.org/10.1016/0040-1951(93)90292-R

Korja, A., Lahtinen, R., Heikkinen, P., Kukkonen, I. and Fire Working Group. 2003. A tectonic model for Paleoproterozoic crocodile structures at Karelian Svecofennian boundary – results from FIRE-1 and BABEL2 & 3. In EGS-AGU-EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6–11 April 2003, abstract id. 2801.

Kukkonen, I. and Lauri, L. 2009. Modelling the thermal evolution of a collisional Precambrian orogen: high heat production migmatitic granites of southern Finland. Precambrian Research168(3–4), 233–246. 
https://doi.org/10.1016/j.precamres.2008.10.004  

Lahtinen, R. 2000. Archaean–Proterozoic transition: geochemistry, provenance and tectonic setting of metasedimentary rocks in central Fennoscandian Shield, Finland. Precambrian Research104(3–4), 147–174. 
https://doi.org/10.1016/S0301-9268(00)00087-5  

Lahtinen, R. and Nironen, M. 2010. Paleoproterozoic lateritic paleosol–ultra-mature/mature quartzite–meta-arkose successions in southern Fennoscandia – intra-orogenic stage during the Svecofennian orogeny. Precambrian Research183(4), 770–790. 
https://doi.org/10.1016/j.precamres.2010.09.006  

Lahtinen, R., Huhma, H. and Kousa, J. 2002. Contrasting source components of the Paleoproterozoic Svecofennian metasediments: detrital zircon U–Pb, Sm–Nd and geochemical data. Precambrian Research116(1–2), 81–109. 
https://doi.org/10.1016/S0301-9268(02)00018-9

Lahtinen, R., Korja, A. and Nironen, M. 2005. Paleoproterozoic tectonic evolution. In Developments in Precambrian Geology, Vol. 14 (Lehtinen, M., Nurmi, P. A. and Rämö, O. T., eds). Elsevier, 481–531. 
https://doi.org/10.1016/S0166-2635(05)80012-X

Lahtinen, R., Garde, A. A. and Melezhik, V. A. 2008. Paleoproterozoic evolution of Fennoscandia and Greenland. Episodes: Journal of International Geoscience31(1), 20–28. 
https://doi.org/10.18814/epiiugs/2008/v31i1/004

Lahtinen, R., Korja, A., Nironen, M. and Heikkinen, P. 2009. Palaeoproterozoic accretionary processes in Fennoscandia. Geological Society, London, Special Publications318(1), 237–256. 
https://doi.org/10.1144/SP318.8

Lahtinen, R., Huhma, H., Kontinen, A., Kohonen, J. and Sorjonen-Ward, P. 2010. New constraints for the source char­acteristics, deposition and age of the 2.1–1.9 Ga metasedimentary cover at the western margin of the Karelian Province. Precambrian Research176(1–4), 77–93. 
https://doi.org/10.1016/j.precamres.2009.10.001

Lahtinen, R., Hölttä, P., Kontinen, A., Niiranen, T., Nironen, M., Saalmann, K. and Sorjonen-Ward, P. 2011. Tectonic and metallogenic evolution of the Fennoscandian shield: key questions with emphasis on Finland. Geological Survey of Finland, Special Paper49, 23–33.

Lahtinen, R., Huhma, H., Sipilä, P. and Vaarma, M. 2017. Geochemistry, U-Pb geochronology and Sm-Nd data from the Paleoproterozoic Western Finland supersuite – a key component in the coupled Bothnian oroclines. Precambrian Research299, 264–281. 
https://doi.org/10.1016/j.precamres.2017.07.025

Lahtinen, R., Salminen, P. E., Sayab, M., Huhma, H., Kurhila, M. and Johnston, S. T. 2022. Age and structural constraints on the tectonic evolution of the Paleoproterozoic Saimaa orocline in Fennoscandia. Precambrian Research369, 106477. 
https://doi.org/10.1016/j.precamres.2021.106477

Large, R. R., Gemmell, J. B., Paulick, H. and Huston, D. L. 2001. The alteration box plot: a simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Economic Geology96(5), 957–971. 
https://doi.org/10.2113/gsecongeo.96.5.957  

Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. and Zanettin, B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology27(3), 745–750. 
https://doi.org/10.1093/petrology/27.3.745

Ma, L.-T., Dai, L.-Q., Zheng, Y.-F., Zhao, Z.-F., Fang, W., Zhao, K. et al. 2021. Geochemical distinction between altered oceanic basalt- and seafloor sediment-derived fluids in the mantle source of mafic igneous rocks in southwestern Tianshan, western China. Journal of Petrology62(1), egab014. 
https://doi.org/10.1093/petrology/egab014  

MacLean, W. and Hoy, L. D. 1991. Geochemistry of hydrothermally altered rocks at the Horne Mine, Noranda, Quebec. Economic Geology86(3), 506–528. 
https://doi.org/10.2113/gsecongeo.86.3.506

McDonough, W. F. and Frey, F. A. 1989. Rare earth elements in upper mantle rocks. In Geochemistry and Mineralogy of Rare Earth Elements (Lipin, B. R. and McKay, G. A., eds). De Gruyter, Berlin, Boston, 99–145. 
https://doi.org/10.1515/9781501509032-008  

McLennan, S. M. 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In Geochemistry and Mineralogy of Rare Earth Elements (Lipin, B. R. and McKay, G. A., eds). De Gruyter, Berlin, Boston, 169–200. 
https://doi.org/10.1515/9781501509032-010

McLennan, S. M. 1993. Weathering and global denudation. The Journal of Geology101(2), 295–303. 
https://doi.org/10.1086/648222  

McLennan, S. M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems2(4). 
https://doi.org/10.1029/2000GC000109

McLennan, S. M. and Taylor, S. R. 1991. Sedimentary rocks and crustal evolution: tectonic setting and secular trends. The Journal of Geology99(1), 1–21. 
https://doi.org/10.1086/629470

McLennan, S. M., Taylor, S. R., McCulloch, M. T. and Maynard, J. B. 1990. Geochemical and Nd-Sr isotopic com­position of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta54(7), 2015–2050. 
https://doi.org/10.1016/0016-7037(90)90269-Q

McLennan, S. M., Hemming, S. R., McDaniel, D. K. and Hanson, G. N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. In Processes Controlling the Composition of Clastic Sediments (Johnsson, M. J. and Basu, A., eds). Geological Society of America, Boulder, Colorado, 21–40. 
https://doi.org/10.1130/SPE284-p21

McLennan, S. M., Hemming, S. R., Taylor, S. R. and Eriksson, K. A. 1995. Early Proterozoic crustal evolution: geochemical and Nd–Pb isotopic evidence from metasedimentary rocks, south­western North America. Geochimica et Cosmochimica Acta59(6), 1153–1177. 
https://doi.org/10.1016/0016-7037(95)00032-U

Mikkola, P., Mönkäre, K., Ahven, M. and Huhma, H. 2018. Geo­chemistry and age of the Paleoproterozoic Makkola suite volcanic rocks in central Finland. In Development of the Paleoproterozoic Svecofennian Orogeny: New Constraints from the Southeastern Boundary of the Central Finland Granitoid Complex (Mikkola, P., Hölttä, P. and Käpyaho, A., eds)Geological Survey of Finland, Bulletin, 407, 85–105.
http://doi.org/10.30 440/bt407.5  

Nesbitt, H. W. and Young, G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature299, 715–717. 
https://doi.org/10.1038/299715a0

Nirgi, S. and Soesoo, A. 2021. Geology and geochemistry of a Paleoproterozoic iron mineralization in North-Eastern Estonia. Proceedings of the Karelian Research Centre of the Russian Academy of Sciences10, 25–43. 
https://doi.org/10.17076/geo1492  

Nironen, M. 2017. Bedrock of Finland at the Scale 1:1000000 – Major Stratigraphic Units, Metamorphism and Tectonic Evolution. Geological Survey of Finland, Espoo.

Parker, A. 1970. An index of weathering for silicate rocks. Geo­logical Magazine107(6), 501–504. 
https://doi.org/10.1017/S0016756800058581

Patiño Douce, A. E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society, London, Special Pub­li­cations168(1), 55–75. 
https://doi.org/10.1144/GSL.SP.1999.168.01.05

Pearce, J. A. 1996. A user’s guide to basalt discrimination diagrams. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration (Wyman, D. A., ed.)Geological Association of Canada, St. John’s, 79–113.

Pearce, J. A. and Norry, M. J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology69(1), 33–47. 
https://doi.org/10.1007/BF00375192  

Pesonen, L. J., Salminen, J., Elming, S.-Å., Evans, D. A. D. and Veikkolainen, T. 2021. Ancient Supercontinents and the Paleogeography of Earth. Elsevier, Amsterdam. 
https://doi.org/10.1016/C2018-0-03855-4

Petersell, V. and Levchenkov, O. 1994. On the geological structure of the crystalline basement of the southern slope of the Baltic Shield. Acta et Commentationes Universitatis Tartuensis972(14), 16–39.

Pettijohn, F. J., Potter, P. E. and Siever, R. 1987. Sedimentary structures and bedding. In Sand and Sandstone. Springer, New York. 
https://doi.org/10.1007/978-1-4612-1066-5_4

Puura, V. and Huhma, H. 1993. Palaeoproterozoic age of the East Baltic granulitic crust. Precambrian Research64(1–4), 289–294. 
https://doi.org/10.1016/0301-9268(93)90082-D  

Puura, V., Vaher, R., Klein, V., Koppelmaa, H., Niin, M., Vanamb, V. and Kirs, J. 1983. Кристаллический фундамент Эстонии (The Crystalline Basement of Estonian Territory). Nauka, Moscow.

Puura, V., Hints, R., Huhma, H., Klein, V., Konsa, M., Kuldkepp, R. et al. 2004. Svecofennian metamorphic zones in the basement of Estonia. Proceedings of the Estonian Academy of Sciences, Geology53(3), 190–209. 
https://doi.org/10.3176/geol.2004.3.04

Rämö, O. T., Turkki, V., Mänttäri, I., Heinonen, A., Larjamo, K. and Lahaye, Y. 2014. Age and isotopic fingerprints of some plutonic rocks in the Wiborg rapakivi granite batholith with special reference to the dark wiborgite of the Ristisaari Island. Bulletin of the Geological Society of Finland86, 71–91.
https://doi.org/10.17741/bgsf/86.2.002  

Rasilainen, K., Lahtinen, R. and Bornhorst, T. J. 2007. The Rock Geochemical Database of Finland: Manual. Geological Survey of Finland, Espoo.

Roser, B. P. and Korsch, R. J. 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology94(5), 635–650. 
https://doi.org/10.1086/629071

Roser, B. P. and Korsch, R. J. 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology67(1–2), 119–139. 
http://dx.doi.org/10.1016/0009-2541(88)90010-1

Rudnick, R. L. and Gao, S. 2003. Composition of the continental crust. In Treatise on Geochemistry, Vol. 3 (Holland, H. D. and Turekian, K. K., eds). Elsevier, Amsterdam, 1–64. 
https://doi.org/10.1016/B0-08-043751-6/03016-4

Saccani, E. 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers6(4), 481–501. 
https://doi.org/10.1016/j.gsf.2014.03.006

Saccani, E., Delavari, M., Dolati, A., Marroni, M., Pandolfi, L., Chiari, M. and Barbero, E. 2018. New insights into the geo­dynamics of Neo-Tethys in the Makran area: evidence from age and petrology of ophiolites from the Coloured Mélange Complex (SE Iran). Gondwana Research62, 306–327. 
https://doi.org/10.1016/j.gr.2017.07.013

Shand, S. J. 1943. Eruptive Rocks: Their Genesis, Composition, and Classification, with a Chapter on Meteorites. John Wiley & Sons, New York.

Sifeta, K., Roser, B. P. and Kimura, J.-I. 2005. Geochemistry, provenance, and tectonic setting of Neoproterozoic metavolcanic and metasedimentary units, Werri area, northern Ethiopia. Journal of African Earth Sciences41(3), 212–234. 
https://doi.org/10.1016/j.jafrearsci.2005.04.004

Skridlaite, G. and Motuza, G. 2001. Precambrian domains in Lithuania: evidence of terrane tectonics. Tectonophysics339(1–2), 113–133. 
https://doi.org/10.1016/S0040-1951(01)00035-X

Skridlaite, G., Willingshofer, E. and Stephenson, R. 2003. P–T–t modelling of Proterozoic terranes in Lithuania: geodynamic implications for accretion of southwestern Fennoscandia. GFF125(4), 201–211. 
https://doi.org/10.1080/11035890301254201

Soesoo, A. and Hade, S. 2012. Geochemistry and age of some A-type granitoid rocks of Estonia. In Lithosphere 2012: Seventh Symposium on the Structure, Composition and Evolution of the Lithosphere in Finland, Espoo, Finland, 6–8 November 2012 (Kukkonen, I., Kosonen, E., Oinonen, K., Eklund, O., Korja, A., Korja, T. et al., eds). Institute of Seismology, Helsinki, 97–100.

Soesoo, A., Puura, V., Kirs, J., Petersell, V., Niin, M. and All, T. 2004. Outlines of the Precambrian basement of Estonia. Proceedings of the Estonian Academy of Sciences, Geology53(3), 149–164. 
https://doi.org/10.3176/geol.2004.3.02

Soesoo, A., Košler, J. and Kuldkepp, R. 2006. Age and geochemical constraints for partial melting of granulites in Estonia. Mineralogy and Petrology86, 277–300. 
https://doi.org/10.1007/s00710-005-0110-8

Soesoo, A., Nirgi, S. and Plado, J. 2020. The evolution of the Estonian Precambrian basement: geological, geophysical and geochronological constraints. Proceedings of the Karelian Research Centre of the Russian Academy of Sciences2, 18–33. 
https://doi.org/10.17076/geo1185

Solano-Acosta, J. D., Soesoo, A. and Hints, R. 2023. New insights of the crustal structure across Estonia using satellite potential fields derived from WGM-2012 gravity data and EMAG2v3 magnetic data. Tectonophysics846, 229656. 
https://doi.org/10.1016/j.tecto.2022.229656

Stephens, M. B. and Weihed, J. B. 2020. Sweden: lithotectonic framework, tectonic evolution and mineral resources. Geological Society, London, Memoirs50
https://doi.org/10.1144/M50

Sun, S. S. and McDonough, W. F. 1989. Chemical and isotopic sys­tematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications42(1), 313–345. 
https://doi.org/10.1144/GSL.SP.1989.042.01.19

Taylor, S. R. and McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.

Verma, S. P. and Armstrong-Altrin, J. S. 2013. New multi-di­men­sional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology355, 117–133. 
https://doi.org/10.1016/j.chemgeo.2013.07.014

Wan, L., Zeng, Z., Kusky, T., Asimow, P., He, C., Liu, Y. et al. 2019. Geochemistry of middle-late Mesozoic mafic intrusions in the eastern North China Craton: new insights on lithospheric thinning and decratonization. Gondwana Research73, 153–174. 
https://doi.org/10.1016/j.gr.2019.04.004

Wood, D. A. 1980. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters50(1), 11–30. 
https://doi.org/10.1016/0012-821X(80)90116-8  

Yang, G., Li, Y., Xiao, W., Sun, Y. and Tong, L. 2014. Petrogenesis and tectonic implications of the middle Silurian volcanic rocks in northern West Junggar, NW China. International Geology Review56(7), 869–884. 
https://doi.org/10.1080/00206814.2014.905214

Back to Issue