Latvia’s peatlands play an important role in achieving the country’s climate goals and preserving natural diversity. Approximately 10% of Latvia’s territory is covered by peatlands, more precisely defined as peat deposits. However, outdated inventories of these peatlands hinder the development of sustainable policies for managing natural recourses. This lack of data also complicates efforts to predict the extent of fens and assess their potential contribution to climate change mitigation, such as through rewetting activities. In this study, we assessed the extent of fens in one of Latvia’s largest municipalities – Ogre. After a feasibility study using GIS tools, fen peat deposits were randomly selected and surveyed in the field to determine the type, thickness, and characteristics of the peat. Among the 20 sites surveyed, only five corresponded to fen peat deposits (with a peat layer of at least 30 cm), and only one of these qualified as a fen also in terms of vegetation and moisture regime. Existing fen peat deposits are subject to intensive erosion, mineralization, and decomposition, leading to greenhouse gas emissions. The results indicate that there are significantly fewer fen peat deposits than previously assumed, and a detailed analysis of their extent, involving field inspection and verification at the national level, is needed.
Aalde, H., Abdelgadir, A. Y., Abdu Khalil, A. S., Barton, J., Bickel, K., Bin-Musa, S. et al. 2003. LUCF sector good practice guidance. In Good Practice Guidance for Land Use, Land-Use Change and Forestry (Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R. et al., eds). Institute for Global Environmental Strategies, Hayama, 3.135.–3.141.
Alm, J., Saarnio, S., Nykanen, H., Silvola, J. and Martikainen, P. J. 1999. Appendix 3A. 3 Wetlands remaining wetlands: basis for future methodological development. In Good Practice Guidance for Land Use, Land-Use Change and Forestry (Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R. et al., eds). Institute for Global Environmental Strategies, Hayama, 3.277–3.294.
Bambe, B., Gerra-Inohosa, L., Kukāre, I., Leimanis, I., Liepiņa, L., Mežaka, A. et al. 2024. Latvijas aizsargājamo sūnu sugu noteicējs (Latvian Protected Moss Species Locator). SIA RA Drukātava, Daugavpils University.
https://du.lv/wp-content/uploads/2024/11/Latvijas-aizsargajamo-sunu-sugu-noteicejs-2024-1-1.pdf (accessed 2024-12-15).
Cabinet of Ministers. 2020. Strategy of Latvia for Reaching Climate Neutrality Until 2050.
https://www.europarl.europa.eu/RegData/etudes/BRIE/2024/767177/EPRS_BRI(2024)767177_EN.pdf
Drzymulska, D. 2016. Peat decomposition – shaping factors, significance in environmental studies and methods of determination; a literature review. Geologos, 22(1), 61–69.
http://dx.doi.org/10.1515/logos-2016-0005
European Commission. Natura 2000.
https://environment.ec.europa.eu/topics/nature-and-biodiversity/natura-2000_en (accessed 2024-11-02).
European Commission. Natura 2000 Viewer.
https://natura2000.eea.europa.eu/ (accessed 2024-11-02).
European Environmental Bureau. 2021. Summary of EEB’s Five Policy Recommendations on Carbon Farming.
https://eeb.org/library/carbon-farming-policy-recommendations-to-deliver-win-win-wins-for-climate-nature-and-farmers/ (accessed 2023-03-02).
Felsche, E., Böhnisch, A., Poschlod, B. and Ludwig, R. 2024. European hot and dry summers are projected to become more frequent and expand northwards. Communications Earth & Environment, 5, 410.
https://doi.org/10.1038/s43247-024-01575-5
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A. et al. 2017. Natural climate solutions. Earth, Atmospheric, and Planetary Sciences, 114(44), 11645–11650.
https://doi.org/10.1073/pnas.1710465114
Heiri, O., Lotter, A. F. and Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproductibility and comparability of results. Journal of Paleolimnology, 25, 101–110.
http://dx.doi.org/10.1023/A:1008119611481
Hinzke, T., Li, G., Tanneberger, F., Seeber, E., Aggenbach, C., Lange, J. et al. 2021. Potentially peat-forming biomass of fen sedges increases with increasing nutrient levels. Functional Ecology, 35(7), 1579–1595.
https://doi.org/10.1111/1365-2435.13803
International Peatland Society.
https://peatlands.org/peat/peat/ (accessed 2024-11-03).
IPCC (Intergovernmental Panel on Climate Change). 2019. Summary for policymakers. In Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C. et al., eds). IPCC, Geneva.
Jauhiainen, J., Kazanaviciute, V., Armolaitis, K., Kull, A., Līcīte, I., Butlers, A. et al. 2019. Report on current situation – applied emission factors and projections of greenhouse gas emissions from organic soils (A.1/2). Latvia State Forest Research Institute “Silava”, Salaspils.
Joosten, H. and Clarke, D. 2002. Wise Use of Mires and Peatlands. International Mire Conservation Group and International Peat Society.
Jurasinski, G., Barthelmes, A., Byrne, K. A., Chojnicki, B. H., Christiansen, J. R., Decleer, K. et al. 2024. Active afforestation of drained peatlands is not a viable option under the EU Nature Restoration Law. Ambio, 53, 970–983.
https://doi.org/10.1007/s13280-024-02016-5
Kalnina, L., Stivrins, N., Kuske, E., Ozola, I., Pujate, A., Zeimule, S. et al. 2015. Peat stratigraphy and changes in peat formation during the Holocene in Latvia. Quaternary International, 383, 186–195.
https://doi.org/10.1016/j.quaint.2014.10.020
Liepiņa, L. 2017. Īpaši aizsargājamās un reti sastopamās sūnu sugas Latvijā (Specially Protected and Rare Moss Species in Latvia).
https://lvafa.vraa.gov.lv/faili/materiali/petijumi/2017/DU_DIVIC_171/LVAF_sunas.pdf (accessed 2023-11-03).
Lourenco, M., Fitchett, J. M. and Woodborne, S. 2022. Peat definitions: a critical review. Progress in Physical Geography: Earth and Environment, 47(4), 1–15.
https://doi.org/10.1177/03091333221118353
LVĢMC (Latvian Environment, Geology and Meteorology Centre). 2023. Peat deposits.
https://www.meteo.lv/apex/f?p=117:1:1502646606608801 (accessed 2023-04-04).
Malmer, N. and Wallén, B. 2004. Input rates, decay losses and accumulation rates of carbon in bogs during the last millennium: internal processes and environmental changes. The Holocene, 14(1), 111–117.
https://doi.org/10.1191/0959683604hl693rp
Martin, N. and Couwenberg, J. 2021. Organic soils in national inventory submissions of EU countries. Greifswald Mire Centre, Greifswald.
https://www.greifswaldmoor.de/files/dokumente/GMC%20Schriften/2021_Martin&Couwenberg.pdf
Michaelis, D., Mrotzek, A. and Couwenberg, J. 2020. Roots, tissues, cells and fragments – how to characterize peat from drained and rewetted fens. Soil Systems, 4(1), 12–27.
https://doi.org/10.3390/soilsystems4010012
Ministry of Agriculture. 2023. Ilgstpējīgas augsnes resursu pārvaldības uzlabošana lauksaimniecībā (E2SOILAGRI) (Enhancement of Sustainable Soil Resource Management in Agriculture).
https://www.zm.gov.lv/lv/media/13137/download?attachment
Ministry of Environmental Protection and Regional Development. 2020. Pašvaldības profils: apvienotais Ogres novads (Municipality Profile: United Ogre Municipality).
https://www.varam.gov.lv/sites/varam/files/content/files/profils_ogres_apvienotais_n-1.pdf (accessed 2024-04-27).
Nature Conservation Agency. 2022. Informatīvais ziņojums “Par Eiropas Savienības nozīmes aizsargājamo biotopu izplatības un kvalitātes apzināšanas rezultātiem un tālāko rīcību aizsargājamo biotopu labvēlīgas aizsardzības stāvokļa nodrošināšanas un tautsaimniecības nozaru attīstības interešu sabalansēšanai” (Information Report on the Results of the Survey on the Distribution and Quality of Protected Habitats of European Union Importance and Further Actions to Ensure a Favorable Conservation Status of Protected Habitats and to Balance the Development Interests of Economic Sectors).
https://www.daba.gov.lv/lv/media/17202/download?attachment (accessed 2024-05-20).
Nature Conservation Agency. 2024. Nature Data Management System OZOLS.
https://ozols.gov.lv/ozols/Account/LogOn (accessed 2024-08-18).
Nusbaums, J. and Rieksts, I. 1997. Purvi. In Latvijas daba: Latvijas Enciklopēdija, 4 (Latvian Nature: The Latvian Encyclopaedia, 4) (Kavacs, G., ed.). Preses nams, Riga, 195–199.
Ogre Municipality. 2022. Ogres novada ilgtspējīgas attīstības stratēģija 2022.–2034. gadam (Sustainable Development Strategy of Ogre Municipality 2022–2034).
https://www.ogresnovads.lv/lv/jaunums/ogres-novada-ilgtspejigas-attistibas-strategijas-2022-2034gadam-20-redakcijas-un-ogres-novada-attistibas-programmas-2022-2027gadam-20-redakcijas-un-vides-parskata-projekta-publiska-apspriesana?utm_source=https%3A%2F%2Fwww.google.com%2F (accessed 2024-06-20).
Paal, J. and Leibak, E. 2013. Eesti soode seisund ja kaitstus (State and Protection of Estonian Mires). AS Regio, Tartu.
State Audit Office of the Republic of Latvia. 2023. Management of mineral resources in Latvia.
https://lrvk.gov.lv/en/getrevisionfile/29579-nKEPdgmiwd0gEFeqn8nUITzfjxKdvFxh.pdf (accessed 2023-10-04).
State Land Service. 2023. Statistika par zemes sadalījumu zemes lietošanas veidos 2023. gada 1. janvārī (Statistics on the Distribution of Land by Type of Land Use on 1 January 2023).
https://www.vzd.gov.lv/lv/zemes-sadalijums-zemes-lietosanas-veidos (accessed 2024-04-25).
Stivrins, N., Kalnina, L., Cerina, A., Reire, E., Kreslina, S., Ozola, I. et al. 2025. Climate change impact on peatland dynamics during the Holocene in Latvia, northeastern Europe. Catena. Manuscript under review.
Strack, M., Davidson, S. J., Hirano, T. and Dunn, C. 2022. The potential of peatlands as nature-based climate solutions. Current Climate Change Reports, 8, 71–82.
http://dx.doi.org/10.1007/s40641-022-00183-9
Swindles, G. T., Morris, P. J., Mullan, D. J., Payne, R. J., Roland, T. P., Amesbury, M. J. et al. 2019a. Widespread drying of European peatlands in recent centuries. Nature Geoscience, 12, 922–928.
https://doi.org/10.1038/s41561-019-0462-z
Tanneberger, F., Abel, S., Couwenberg, J., Dahms, T., Gaudig, G., Günther, A. et al. 2021. Towards net zero CO2 in 2050: an emission reduction pathway for organic soils in Germany. Mires and Peat, 27(5), 1–17.
http://dx.doi.org/10.19189/MaP.2020.SNPG.StA.1951
University of Latvia. 2024. Maps.
https://eztf.lu.lv/petnieciba/kartes/ (accessed 2024-06-09).
van der Velde, Y., Temme, A. J. A. M., Nijp, J. J., Braakhekke, M. C., van Voorn, G. A. K., Dekker, S. C. et al. 2021. Emerging forest–peatland bistability and resilience of European peatland carbon stores. Proceedings of the National Academy of Sciences, 118(38), e210174211.
https://doi.org/10.1073/pnas.2101742118