ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Research article
Climate-driven hydrological sensitivity in Estonian catchments: a northern temperate perspective; pp. 1–21
PDF | 10.3176/earth.2025.01

SUPPLEMENTARY MATERIAL

Authors
Oliver Koit, Joonas Pärn, Marlen Hunt, Siim Tarros, Elve Lode, Pamela Abreldaal
Abstract

The escalating impacts of global climate change significantly affect regional hydrological systems, particularly in northern areas such as Estonia. This study investigates the hydrological sensitivity of Estonian catchments to climatic variability, focusing on the interplay between surface water and groundwater. Using data from 42 river catchments, it employs various statistical methods in hydrology, emphasizing the autocorrelation function, cross-correlation function, baseflow index, and flow duration curve. The analysis spans the years 2012–2022, integrating hydrological, spatial, and water quality parameters. The research identifies four distinct hydrological behavior clusters: plateau, sandstone upland, carbonate upland, and lowland. Key findings include diverse catchment sensitivities to groundwater recharge, the role of baseflow in streamflow stabilization, the memory effect in catchment responses, and insights from the flow duration curve on flow variability and extremes. The LightGBM model, predicting focus parameters, highlights the critical influence of air temperature and snowpack on streamflow characteristics. This study underscores the diverse hydrological sensitivities of Estonian catchments to hydroclimatic changes, emphasizing the importance of considering catchment-specific characteristics in water resource management and policy-making. Contributing to the broader understanding of hydrological processes, it provides valuable insights for future research and environmental planning in the face of climate variability and change.

References

Babre, A., Popovs, K., Kalvāns, A., Jemeljanova, M. and Dēliņa, A. 2023. Forecasting the groundwater levels in the Baltic through standardized index analysis. Weather and Climate Extremes45, 100728. 
https://doi.org/10.1016/j.wace.2024.100728  

Bailly-Comte, V., Jourde, H., Roesch, A., Pistre, S. and Batiot-Guilhe, C. 2008. Time series analyses for karst/river interactions assessment: case of the Coulazou river (southern France). Journal of Hydrology349(1–2), 98–114. 
https://doi.org/10.1016/j.jhydrol.2007.10.028  

Barnett, T. P., Adam, J. C. and Lettenmaier, D. P. 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature438, 303–309.

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A. and Wood, E. F. 2018. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Scientific Data5, 180214. 
https://doi.org/10.1038/sdata.2018.214  

Berghuijs, W. R., Woods, R. A. and Hrachowitz, M. 2014. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nature Climate Change4, 583–586. 
https://doi.org/10.1038/nclimate2246  

Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A. P., Parajka, J., Merz, B. et al. 2019. Changing climate both increases and decreases European river floods. Nature573, 108–111. 
https://doi.org/10.1038/s41586-019-1495-6  

Cinkus, G., Mazzilli, N. and Jourde, H. 2023. KarstID: an R Shiny application for the analysis of karst spring discharge time series and the classification of karst system hydrological functioning. Environmental Earth Sciences82, 136. 
https://doi.org/10.1007/s12665-023-10830-5  

Cochand, M., Christe, P., Ornstein, P. and Hunkeler, D. 2019. Groundwater storage in high alpine catchments and its con­tribution to streamflow. Water Resources Research55(4), 2613–2630. 
https://doi.org/10.1029/2018WR022989  

Coppola, E., Nogherotto, R., Ciarlo’, J. M., Giorgi, F., van Meijgaard, E., Kadygrov, N. et al. 2021. Assessment of the European climate projections as simulated by the large EURO-CORDEX regional and global climate model ensemble. Journal of Geophysical Research: Atmospheres126(4). 
https://doi.org/10.1029/2019JD032356   

Costantini, M., Colin, J. and Decharme, B. 2023. Projected climate‐driven changes of water table depth in the world’s major groundwater basins. Earth’s Future11(3). 
https://doi.org/10.1029/2022EF003068  

Donnelly, C., Greuell, W., Andersson, J., Gerten, D., Pisacane, G., Roudier, P. and Ludwig, F. 2017. Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Climatic Change143, 13–26. 
https://doi.org/10.1007/s10584-017-1971-7  

Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M. et al. 2021. Water cycle changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S. et al., eds). Cambridge University Press, Cambridge, New York, 1055–1210. 
https://doi.org/doi:10.1017/9781009157896.010  

Earman, S. and Dettinger, M. 2011. Potential impacts of climate change on groundwater resources – a global review. Journal of Water & Climate Change2(4), 213–229. 
https://doi.org/10.2166/wcc.2011.034  

ESRI. 2023. ArcGIS Pro. 
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed 2024-10-02).

Estonian Environment Agency. Environmental Monitoring Information System. 
https://kese.envir.ee/kese/welcome.action (accessed 2024-10-02).

Estonian Environment Agency. 
https://keskkonnaagentuur.ee/ (accessed 2024-10-02).

Estonian Environment Agency. 2014. Hydrological Yearbook 2013. Estonian Environment Agency, Tallinn.

Estonian Land Board. Estonian Land Board Geoportal. 
https://geoportaal.maaamet.ee (accessed 2024-10-02).

European Commission. 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European CommunitiesL 327, 1–72.

Grogan, D. S., Burakowski, E. A. and Contosta, A. R. 2020. Snowmelt control on spring hydrology declines as the vernal window lengthens. Environmental Research Letters15, 114040. 
https://doi.org/10.1088/1748-9326/abbd00  

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D. et al. 2020. Array programming with NumPy. Nature585, 357–362. 
https://doi.org/10.1038/s41586-020-2649-2

Hunt, M. 2021. Modeling of the water balance in the Selja River basin with the PRMS hydrological model. Master’s thesis. University of Tartu, Estonia.

Hunter, J. D. 2007. Matplotlib: a 2D graphics environment. Computing in Science & Engineering9(3), 90–95. 
https://doi.org/10.1109/MCSE.2007.55  

IPCC (Intergovernmental Panel on Climate Change). 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Con­tribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York. 

Jaagus, J. and Mändla, K. 2014. Climate change scenarios for Estonia based on climate models from the IPCC Fourth Assessment Report. Estonian Journal of Earth Sciences63(3), 166–180. 
https://doi.org/10.3176/earth.2014.15

Jaagus, J., Järvet, A., Roosaare, J., Tamm, T. and Vallner, L. 1998. Integrated assessment of climate change impact on water re­sources in Estonia. In Country Case Study on Climate Change Impacts and Adaptation Assessments in the Republic of Estonia (Tarand, A. and Kallaste, T., eds). SEI-T & UNEP, Tallinn, 59–76.

Jaagus, J., Sepp, M., Tamm, T., Järvet, A. and Mõisja, K. 2017. Trends and regime shifts in climatic conditions and river runoff in Estonia during 1951–2015. Earth System Dynamics8(4), 963–976. 
https://doi.org/10.5194/esd-8-963-2017

Järvet, A. 1998. Long-term changes in time series of water balance elements. In Country Case Study on Climate Change Impacts and Adaptation Assessments in the Republic of Estonia (Tarand, A. and Kallaste, T., eds). SEI-T & UNEP, Tallinn, 69−71.

Jefferson, A., Nolin, A., Lewis, S. and Tague, C. 2008. Hydrogeologic controls on streamflow sensitivity to climate variation. Hydrological Processes22(22), 4371–4385. 
https://doi.org/10.1002/hyp.7041  

Jenicek, M., Seibert, J., Zappa, M., Staudinger, M. and Jonas, T. 2016. Importance of maximum snow accumulation for summer low flows in humid catchments. Hydrology and Earth System Sciences20(2), 859–874.
https://doi.org/10.5194/hess-20-859-2016  

Kalm, V. 2006. Pleistocene chronostratigraphy in Estonia, southeastern sector of the Scandinavian glaciation. Quaternary Science Reviews25(9–10), 960–975. 
https://doi.org/10.1016/j.quascirev.2005.08.005  

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W. et al. 2017. LightGBM: a highly efficient gradient boosting decision tree. In 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 4–9 December 2017 (Luxburg, U. von, Guyon, I., Bengio, S., Wallach, H. and Fergus, R., eds). Curran Associates Inc., New York, 3149–3157.

Killian, C. D., Asquith, W. H., Barlow, J. R. B., Bent, G. C., Kress, W. H., Barlow, P. M. and Schmitz, D. W. 2019. Char­acterizing groundwater and surface-water interaction using hydrograph-separation techniques and groundwater-level data throughout the Mississippi Delta, USA. Hydrogeology Journal27, 2167– 2179. 
http://dx.doi.org/10.1007/s10040-019-01981-6  

Koit, O. 2022. Surface water and groundwater interaction in shallow karst aquifers of Lower Estonia. PhD thesis. Tallinn University, Estonia. 
https://doi.org/10.13140/RG.2.2.13634.86726  

Koit, O., Mayaud, C., Kogovšek, B., Vainu, M., Terasmaa, J. and Marandi, A. 2022. Surface water and groundwater hydraulics of lowland karst aquifers of Estonia. Journal of Hydrology610, 127908.
https://doi.org/10.1016/j.jhydrol.2022.127908  

Kotta, J., Herkül, K., Jaagus, J., Kaasik, A., Raudsepp, U., Alari, V. et al. 2018. Linking atmospheric, terrestrial and aquatic environments: regime shifts in the Estonian climate over the past 50 years. PLoS ONE13(12). 
https://doi.org/10.1371/journal.pone.0209568  

Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F. 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift15(3), 259−263. 
http://dx.doi.org/10.1127/0941-2948/2006/0130

Ladson, A. R., Brown, R., Neal, B. and Nathan, R. 2013. A standard approach to baseflow separation using the Lyne and Hollick filter. Australasian Journal of Water Resources17(1), 25–34. 
https://doi.org/10.7158/13241583.2013.11465417  

Larocque, M., Mangin, A., Razack, M. and Banton, O. 1998. Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). Journal of Hydrology205(3–4), 217–231.
https://doi.org/10.1016/S0022-1694(97)00155-8  

Liu, Y., Wagener, T., Beck, H. E. and Hartmann, A. 2020. What is the hydrologically effective area of a catchment? Environmental Research Letters15, 104024. 
https://doi.org/10.1088/1748-9326/aba7e5  

Lumivero. 2023. XLSTAT statistical and data analysis solution. 
https://www.xlstat.com/en (accessed 2024-10-02).

Lundberg, S. M. and Lee, S.-I. 2017. A unified approach to interpreting model predictions. In 31st International Conference on Neural Information Processing SystemsLong Beach, California, USA, 4–9 December 2017 (Luxburg, U. von, Guyon, I., Bengio, S., Wallach, H. and Fergus, R., eds). Curran Associates Inc., New York, 4765–4774.

Lyne, V. D. and Hollick, M. 1979. Stochastic time-variable rainfall-runoff modeling. In Hydrology and Water Resources Symposium, Perth, Australia10–12 September 1979. Institution of Engineers National Conference, 89–92.

Mangin, A. 1984. The use of autocorrelation and spectral analyses to obtain a better understanding of hydrological systems. Journal of Hydrology67(1–4), 25–43.

Markstrom, S. L., Regan, R. S., Hay, L. E., Viger, R. J., Webb, R. M. T., Payn, R. A. and LaFontaine, J. H. 2015. PRMS-IV, the precipitation-runoff modeling system, version 4. In Techniques and Methods 6–B7. US Geological Survey, Reston. 
https://doi.org/10.3133/tm6B7  

Mayaud, C., Wagner, T., Benischke, R. and Birk, S. 2014. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria). Journal of Hydrology511, 628−639. 
https://doi.org/10.1016/j.jhydrol.2014.02.024  

McKinney, W. 2010. Data structures for statistical computing in Python. In 9th Python in Science Conference, Austin, USA, 28 June – 3 July 2010 (van der Walt, S. and Millman, J., eds). scipy.org, 51–56.

Meier, H. E. M., Kniebusch, M., Dieterich, C., Gröger, M., Zorita, E., Elmgren, R. et al. 2022. Climate change in the Baltic Sea region: a summary. Earth System Dynamics13(1), 457–593.
https://doi.org/10.5194/esd-13-457-2022  

Meriö, L.-J., Ala-aho, P., Linjama, J., Hjort, J., Kløve, B. and Marttila, H. 2019. Snow to precipitation ratio controls catchment storage and summer flows in boreal headwater catchments. Water Resources Research55(5), 4096–4109. 
https://doi.org/10.1029/2018WR023031  

Muñoz Sabater, J. 2019. ERA5-Land monthly averaged data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 
https://doi.org/10.24381/cds.68d2bb30  

Nõges, T., Vilbaste, S., McCarthy, M. J., Tamm, M. and Nõges, P. 2022. Long-term data reflect nitrogen pollution in Estonian rivers. Hydrology Research53(12), 1468–1479. 
https://doi.org/10.2166/nh.2022.057  

Nygren, M., Giese, M., Kløve, B., Haaf, E., Rossi, P. M. and Barthel, R. 2020. Changes in seasonality of groundwater level fluctuations in a temperate-cold climate transition zone. Journal of Hydrology X8, 100062. 
https://doi.org/10.1016/j.hydroa.2020.100062  

Okkonen, J. and Kløve, B. 2011. A sequential modelling approach to assess groundwater–surface water resources in a snow dominated region of Finland. Journal of Hydrology411(1–2), 91–107. 
https://doi.org/10.1016/j.jhydrol.2011.09.038

Okkonen, J., Jyrkama, M. and Kløve, B. 2011. A conceptual approach for assessing the impact of climate change on groundwater and related surface waters in cold regions (Finland). Hydrogeology Journal18, 429–439. 
http://dx.doi.org/10.1007/s10040-009-0529-9  

Pärn, J. and Mander, Ü. 2012. Increased organic carbon concentrations in Estonian rivers in the period 1992–2007 as affected by deepening droughts. Biogeochemistry108, 351–358. 
https://doi.org/10.1007/s10533-011-9604-0  

Pärn, J., Walraevens, K., Hunt, M., Koit, O., van Camp, M., Ivask, J. et al. 2024. Unveiling the hydrological response of NO3-rich springs to seasonal snowmelt in a karstic carbonate upland. Journal of Hydrology641, 131724. 
https://doi.org/10.1016/j.jhydrol.2024.131724

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O. et al. 2011. Scikit-learn: machine learning in Python. Journal of Machine Learning Research12(85), 2825–2830.

Protasjeva, M. S. and Eipre, T. (eds). 1972. Ресурсы поверхностных вод СССР (Surface Water Resources of USSR). Gidrometeoizdat, Leningrad.

Ranasinghe, R., Ruane, A. C., Vautard, R., Arnell, N., Coppola, E., Cruz, F. A. et al. 2021. Climate change information for regional impact and for risk assessment. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S. et al., eds). Cambridge University Press, Cambridge, New York, 1767–1926. 
https://doi.org/10.1017/9781009157896.014  

Raukas, A. and Kajak, K. 1997. Quaternary cover. In Geology and Mineral Resources of Estonia (Raukas, A. and Teedumäe, A., eds). Estonian Academy Publishers, Tallinn, 125–136. 

Rodhe, A. 1998. Snowmelt-dominated systems. In Isotope Tracers in Catchment Hydrology (Kendall, C. and McDonnell, J. J., eds). Elsevier, Amsterdam, 391–434.

Roosaare, J., Jaagus, J. and Järvet, A. 1998. Modelling the influence of climate change on river runoff. In Country Case Study on Climate Change Impacts and Adaptation Assessments in the Republic of Estonia (Tarand, A. and Kallaste, T., eds). SEI-T & UNEP, Tallinn, 75–83.

Van Rossum, G. and Drake, F. L. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley.

Ruosteenoja, K. and Jylhä, K. 2021. Projected climate change in Finland during the 21st century calculated from CMIP6 model simulations. Geophysica56(1–2), 39–69.

Ruosteenoja, K., Markkanen, T., Venäläinen, A., Räisänen, P. and Peltola, H. 2018. Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Climate Dynamics50 (3–4), 1177–1192. 
https://doi.org/10.1007/s00382-017-3671-4  

Sankarasubramanian, A., Vogel, R. M. and Limbrunner, J. F. 2001. Climate elasticity of streamflow in the United States. Water Resources Research37(6), 1771–1781. 
https://doi.org/10.1029/2000WR900330  

Schuler, P., Campanyà, J., Moe, H., Doherty, D., Williams, N. H. and McCormack, T. 2022. Mapping the groundwater memory across Ireland: a step towards a groundwater drought sus­ceptibility assessment. Journal of Hydrology612, 128277. 
https://doi.org/10.1016/j.jhydrol.2022.128277  

Smerdon, B. D. 2017. A synopsis of climate change effects on ground­water recharge. Journal of Hydrology555, 125–128. 
https://doi.org/10.1016/j.jhydrol.2017.09.047  

Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L. M., van Lanen, H. A. J., Sauquet, E. et al. 2010. Stream­flow trends in Europe: evidence from a dataset of near-natural catchments. Hydrology and Earth System Sciences14(12), 2367–2382. 
https://doi.org/10.5194/hess-14-2367-2010  

Statistics Estonia. 2023. Population Demographics 2023. https://www. stat.ee (accessed 2024-10-02).

Stoelzle, M., Schuetz, T., Weiler, M., Stahl, K. and Tallaksen, L. M. 2020. Beyond binary baseflow separation: a delayed-flow index for multiple streamflow contributions. Hydrology and Earth System Sciences24(2), 849–867. 
https://doi.org/10.5194/hess-24-849-2020  

Sutanto, S. J. and van Lanen, H. A. J. 2022. Catchment memory explains hydrological drought forecast performance. Scientific Reports12, 2689. 
https://doi.org/10.1038/s41598-022-06553-5  

Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Beek, R. van, Wada, Y. et al. 2013. Ground water and climate change. Nature Climate Change3, 322–329. 
http://dx.doi.org/10.1038/nclimate1744  

Teutschbein, C., Grabs, T., Karlsen, R. H., Laudon, H. and Bishop, K. 2015. Hydrological response to changing climate conditions: spatial streamflow variability in the boreal region. Water Resources Research51(12), 9425–9446. 
https://doi.org/10.1002/2015WR017337  

Teutschbein, C., Quesada Montano, B., Todorović, A. and Grabs, T. 2022. Streamflow droughts in Sweden: spatiotemporal patterns emerging from six decades of observations. Journal of Hydrology: Regional Studies42, 101171. 
https://doi.org/10.1016/j.ejrh.2022.101171  

Vallner, L. 1998. Assessment of climate change impact on groundwater. In Country Case Study on Climate Change Impacts and Adaptation Assessments in the Republic of Estonia (Tarand, A. and Kallaste, T., eds). SEI-T & UNEP, Tallinn, 83–89.

Virbulis, J., Bethers, U., Saks, T., Sennikovs, J. and Timuhins, A. 2013. Hydrogeological model of the Baltic Artesian Basin. Hydrogeology Journal21, 845–862. 
https://doi.org/10.1007/s10040-013-0970-7  

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy T., Cournapeu, D. et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods17, 261–272.

Viru, B. and Jaagus, J. 2020. Spatio-temporal variability and seasonal dynamics of snow cover regime in Estonia. Theoretical and Applied Climatology139(1–2), 759–771. 
https://doi.org/10.1007/s00704-019-03013-5  

Vogel, R. M. and Fennessey, N. M. 1994. Flow duration curves. I: new interpretation and confidence intervals. Journal of Water Resources Planning and Management120(4), 485–504.

Vorobevskii, I., Kronenberg, R. and Bernhofer, C. 2022. Linking different drought types in a small catchment from a statistical perspective – case study of the Wernersbach catchment, Germany. Journal of Hydrology X15, 100122. 
https://doi.org/10.1016/j.hydroa.2022.100122  

Worthington, S. R. H. 2019. How preferential flow delivers pre-event groundwater rapidly to streams. Hydrological Processes33(17), 2373–2380. 
https://doi.org/10.1002/hyp.13520  

Wu, W.-Y., Lo, M.-H., Wada, Y., Famiglietti, J. S., Reager, J. T., Yeh, P. J. et al. 2020. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nature Communications11, 3710. 
https://doi.org/10.1038/s41467-020-17581-y

Back to Issue