The organic-rich strata of the Lower and Middle Jurassic occur within separate blocks, covering significant areas of the Carpathian Foredeep basement, the Bârlad Depression and the Dobrogean Foredeep. The deposition of these strata resulted from an anoxic event, leading to the formation of a globally important source rock level. The Rock-Eval pyrolysis results for the Middle Jurassic rocks in the Ukrainian part of the Carpathian Foredeep basement indicated a total organic carbon content of 1.61–14.98 wt%, with type II/III kerogen at an early mature to mature stage. Based on time-temperature index calculations, the top of the oil window occurs at the depth of 2200 m in the Ukrainian part of the Carpathian Foredeep basement, and at 1000 m in both the Bârlad Depression and the Dobrogean Foredeep. The former achieved thermal maturity during the Neogene period, while the latter two entered the oil window towards the end of the Cretaceous period. Across the entire study region, the Lower and Middle Jurassic strata are situated in the oil window over extensive areas, suggesting their potential inclusion in the petroleum system. Hydrocarbons generated by the Toarcian–Bathonian organic-rich rocks may contribute to the formation of Mesozoic–Miocene accumulations in the Carpathian Foredeep basement and some oil fields in the Carpathian flysch sequence. In the Bârlad Depression and the Dobrogean Foredeep, hydrocarbon occurrences may be expected in the Upper Jurassic reservoir rocks, potentially sourced by the Middle Jurassic black shales.
Abdula, R. A., Balaky, S. M., Nurmohamadi, M. and Piroui, M. 2015. Microfacies analysis and depositional environment of the Sargelu Formation (Middle Jurassic) from Kurdistan Region, northern Iraq. Donnish Journal of Geology and Mining Research, 1, 1–26.
Abeed, Q., Alkhafaji, A. and Littke, R. 2011. Source rock potential of the Upper Jurassic–Lower Cretaceous succession in the southern Mesopotamian Basin, southern Iraq. Journal of Petroleum Geology, 34(2), 117–134.
https://doi.org/10.1111/j.1747-5457.2011.00497.x
Ali, F., Qiang, J., Ahmad, S., Khan, S., Hanif, M. and Jan, I. U. 2019. Sedimentological and geochemical analysis of the Middle Jurassic Shinawari Formation, Upper Indus Basin, Pakistan: implications for palaeoenvironmental and hydrocarbon assessment. Arabian Journal for Science and Engineering, 44, 6465–6487.
https://doi.org/10.1007/s13369-019-03778-x
Aqrawi, A. A. M. and Badics, В. 2015. Geochemical characterisation, volumetric assessment and shale-oil/gas potential of the Middle Jurassic–Lower Cretaceous source rocks of NE Arabian Plate. GeoArabia, 20(3), 99–140.
https://doi.org/10.2113/geoarabia200399
Bogayets, A., Bondarchuk, G., Leskiv, I., Novosyletsky, R., Pavluk, M., Paliy, A. et al. 1986. Геология шельфа УССР. Нефтегазоносность (Geology of Shelf of the UkrSSR. Oil- and Gas-bearing). Naukova Dumka, Kiev.
Chandler, M. A., Rind, D. and Ruedy, R. 1992. Pangaean climate during the Early Jurassic: GCM simulations and the sedimentary record of paleoclimate. Geological Society of America Bulletin, 104(5), 543–559.
https://doi.org/10.1130/0016-7606(1992)104%3C0543:PCDTEJ%3E2.3.CO;2
Döbelin, N. and Kleeberg, R. 2015. Profex: a graphical user interface for the Rietveld refinement program BGMN. Journal of Applied Crystallography, 48(5), 1573–1580.
https://doi.org/10.1107/S1600576715014685
Elsaqqa, M. A., El Din, M. Y. Z. and Afify, W. 2023. Unconventional shale gas sweet spot identification and characterization of the Middle Jurassic Upper Safa sediments, Amoun Field, Shushan Basin, Western Desert, Egypt. Journal of Geology & Geophysics, 12(5), 1–34.
https://www.longdom.org/open-access/unconventional-shale-gas-sweet-spot-identification-and-characterization-of-the-middle-jurassic-upper-safa-sediments-amoun-field-sh-101136.html
Gerasimov, L. S., Makarova, I. V., Chalyi, S. V. and Gerasimova, I. I. 2005. Derzhavna geologichna karta Ukrainy mashtabu 1:200 000. Karpatska seria. Arkush M-34-XXIII (Pshemysl), M-34-XXIV (Drohobych) (State Geological Map of Ukraine at a Scale of 1:200 000. Carpathian Series. Sheets M-34-XXIII (Przemysl), M-34-XXIV (Drohobych)). UkrDGRI, Kyiv.
Gnidets, V. P., Grigorchuk, K. G., Polukhtovych, B. M. and Fedyshyn, V. O. 2003. Litogenez Devonskyh vidkladiv Pereddobrudzkoho prohynu (paleokeanografia, sedymentatsiyna tsyklichnist, formuvannia porid-kolektoriv) (Lithogenesis of Devonian Deposits of Dobrogean Foredeep (Palaeoceanography, Sedimentary Cyclicity, Reservoir Rocks’ Formation)). UkrDGRI, Lviv.
Golonka, J., Matyasik, I. and Krobicki, M. 2009. Source rock potential value of Middle Jurassic spherosyderitic black shales (Skrzypny Shale Formation) of the Pieniny Klippen Belt in Poland. Kwartalnik AGH Geologia, 35(3/1), 43–55.
Hesselbo, S. P., Gröcke, D. R., Jenkyns, H. C., Bjerrum, C. J., Farrimond, P., Bell, H. S. M. and Green, O. R. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, 406, 392–395.
https://doi.org/10.1038/35019044
Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. and Oliveira, L. C. V. 2007. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth and Planetary Science Letters, 253(3–4), 455–470.
https://doi.org/10.1016/j.epsl.2006.11.009
Ionescu, N. 1994. Exploration history and hydrocarbon prospects in Romania. In Hydrocarbons of Eastern Central Europe – Habitat, Exploration and Production History (Popescu B. M., ed.). Springer, Berlin, Heidelberg, 217–248.
https://doi.org/10.1007/978-3-642-77205-4_7
Ivanova, A. V. 2012. Каталог показателей отражения витринита угольной органики осадочной толщи Доно-Днепровского и Преддобрудженского прогибов с установленными палеогеотермическими градиентами и амплитудами вертикальных перемещений тектонических структур (Catalog of Indicators of Reflection of Vitrinite of Coal Organic Matter from the Sedimentary Strata of the Don-Dneprovsky and Predobrudzhensky Troughs with Established Paleogeothermal Gradients and Amplitudes of Vertical Displacements of Tectonic Structures). Institut geologicheskikh nauk, Kiev.
Kemp, D. B., Coe, A. L., Cohen, A. S. and Schwark, L. 2005. Astronomical pacing of methane release in the Early Jurassic period. Nature, 437, 396–399.
https://doi.org/10.1038/nature04037
Koltun, Y., Espitalié, J., Kotarba, M., Roure, F., Ellouz, N. and Kosakowski, P. 1998. Petroleum generation in the Ukrainian External Carpathians and the adjacent foreland. Journal of Petroleum Geology, 21(3), 265–288.
https://doi.org/10.1111/j.1747-5457.1998.tb00782.x
Kosakowski, P., Więcław, D., Kowalski, A. and Koltun, Y. 2012. Assessment of hydrocarbon potential of Jurassic and Cretaceous source rocks in the Tarnogród–Stryi area (SE Poland and W Ukraine). Geologica Carpathica, 63(4), 319–333.
https://doi.org/10.2478/v10096-012-0025-3
Kotarba, M. J. and Koltun, Y. 2011. Origin of natural gases in the autochthonous Miocene strata of the Ukrainian Carpathian Foredeep and its Mesozoic basement. Annales Societatis Geologorum Poloniae, 81(3), 425–441.
Løseth, T. M., Ryseth, A. E. and Young, M. 2009. Sedimentology and sequence stratigraphy of the middle Jurassic Tarbert Formation, Oseberg South area (northern North Sea). Basin Research, 21(5), 597–619.
https://doi.org/10.1111/j.1365-2117.2009.00421.x
Mattioli, E., Pittet, B., Palliani, R. B., Röhl, H. J., Schmid-Röhl, A. and Morettini, E. 2004. Phytoplankton evidence for the timing and correlation of palaeoceanographical changes during the early Toarcian oceanic anoxic event (Early Jurassic). Journal of the Geological Society, 161(4), 685–693.
https://doi.org/10.1144/0016-764903-074
Moore, D. M. and Reynolds, R. C., Jr. 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, New York.
Moshrif, M. A. 1987. Sedimentary history and paleogeography of Lower and Middle Jurassic rocks, central Saudi Arabia. Journal of Petroleum Geology, 10(3), 335–349.
https://doi.org/10.1111/j.1747-5457.1987.tb00951.x
Nielsen, O. B., Seidenkrantz, M. S., Abrahamsen, N., Schmidt, B. J., Koppelhus, E. B., Ravn-Sørensen, H. et al. 2003. The Lower–Middle Jurassic of the Anholt borehole: implications for the geological evolution of the eastern margin of the Danish Basin. Geological Survey of Denmark and Greenland Bulletin, 1, 585–609.
https://doi.org/10.34194/geusb.v1.4685
Paraschiv, D. 1979. Zăcămintele de petrol şi gaze ale Romăniei (Romanian Oil and Gas Fields). Studii Tehnice şi Economice, Institutul de Geologie şi Geofizică,Bucureşti.
Pǎtruţ, I. and Dǎneţ, T. 1987. Le Precambrien (Vendien) et le Cambrien dans la Plateforme Moldave (Precambrian (Vendian) and Cambrian of the Moldavian Platform). Analele Ştiinţifice ale Universităţii “Al.I.Cuza” Iaşi, 33, 26–30.
Pawlewicz, M. 2007. Total Petroleum Systems of the Carpathian–Balkanian Basin Province of Romania and Bulgaria. U.S. Geological Survey, Reston, Virginia.
Peltz, M. and Cazaban, G. (eds) 1968. Harta geologicӑ scara 1:200 000. Foaie: L-35-XVI, L-35-XVII (Birlad), L-35-IX (Piatra Neamt), L-35-III (Suceava), L-35-X, L-35-XI (Iaşi) (Geological Map at a Scale of 1:200 000. Sheets M-35-XXVI, M-35-XXVII (Birlad)). Comitetul de Stat al Geologiei, Institutul Geolocic, Bucureşti.
Pene, C. 1996. Hydrocarbon generation modelling in the west of the Moesian Platform, Romania. Petroleum Geoscience, 2(3), 241– 248.
https://doi.org/10.1144/petgeo.2.3.241
Pene, C. 1999. Hydrocarbon potential of the south-western part of the Moldavian Platform, Romania. In 61st EAGE Conference and Exhibition, Helsinki, Finland, 7–11 June 1999. European Association of Geoscientists & Engineers.
https://doi.org/10.3997/2214-4609.201408066
Pieńkowski, G., Schudack, M. E., Bosák, P., Enay, R., Feldman-Olszewska, A., Golonka, J. et al. 2008. Jurassic. In The Geology of Central Europe. Mesozoic and Cenozoic, Vol. 2 (McCann, T., ed.). The Geological Society, London, 823–922.
https://doi.org/10.1144/CEV2P.2
Pitman, J. K., Steinshouer, D. and Lewan, M. D. 2004. Petroleum generation and migration in the Mesopotamian Basin and Tagros Fold Belt of Iraq: results from a basin-modeling study. GeoArabia, 9(4), 41–72.
https://doi.org/10.2113/geoarabia090441
Popescu, B. M. 1995. Romania’s petroleum systems and their remaining potential. Petroleum Geoscience, 1(4), 337−350.
https://doi.org/10.1144/petgeo.1.4.337
Popescu, B. M., Micu, M. and Tari, G. 2016. The Moldova Slope and Basin development in the Ediacaran–Early Paleozoic: a collage with multiple structural overprints. In AAPG European Conference and Exhibition, Bucharest, Romania, 19–20 May 2016.
Qiang, J., Ming, Z., Zhen, L., Xianzhi, G., Dehua, P. and Lamei, L. 2002. Geology and geochemistry of source rocks in the Qaidam Basin, NW China. Journal of Petroleum Geology, 25(2), 219–238.
https://doi.org/10.1111/j.1747-5457.2002.tb00005.x
Radkovets, N. 2015. The Silurian of south-western margin of the East European Platform (Ukraine, Moldova and Romania): lithofacies and palaeoenvironments. Geological Quarterly, 59(1), 105–118.
https://doi.org/10.7306/gq.1211
Radkovets, N. 2016. Lower Devonian lithofacies and palaeoenvironments in the southwestern margin of the East European Platform (Ukraine, Moldova and Romania). Estonian Journal of Earth Sciences, 65(4), 207–220.
https://doi.org/10.3176/earth.2016.18
Radkovets, N., Pavlyuk, M., Yaremchuk, Y. and Koltun, Y. 2021. Ediacaran organic-rich Kalus Beds of western Ukraine and NW Moldova: mineralogy, total organic carbon content and hydrocarbon potential. Estonian Journal of Earth Sciences, 70(4), 210–223.
https://doi.org/10.3176/earth.2021.17
Radzivil, A. Y., Shulha, V. F., Ivanova, A. V., Machulina, S. O., Verhelska, N. V., Aleksandrova, A. V. and Zaytseva, L. B. 2012. Etapy utvorennya vuhletsevykh formatsiy v heolohichnykh strukturakh Ukrayiny (Stages of Formation of Carbon Formations in Geological Structures of Ukraine). LAT and K, Kyiv.
Rauball, J. F., Sachsenhofer, R. F. and Bechtel, A. 2020. Petroleum potential of Middle Jurassic rocks in the basement of the Carpathian Foredeep (Ukraine) and oil-to-source correlation with oil in Upper Jurassic reservoirs. Geologica Carpathica, 71(2), 150–165.
https://doi.org/10.31577/GeolCarp.71.2.4
Shcherba, V. M., Pavlyukh, I. S. and Shcherba, A. S. 1987. Газовые месторождения Предкарпатья (Gas Fields of Fore-Carpathians). Naukova Dumka, Kiev.
Soua, M. 2014. A review of Jurassic oceanic anoxic events as recorded in the northern margin of Africa, Tunisia. Journal of Geosciences and Geomatics, 2(3), 94–106.
https://www.sciepub.com/JGG/abstract/2146
Srivastave, N. and Ranawat, T. S. 2015. An overview of yellow limestone deposits of the Jaisalmer Basin, Rajasthan, India. Volumina Jurassica, 13(1), 107–112.
Tudor, E., Munteanu, I. and Avram, V. 2021. Uncovering the pre-Miocene “Heritage” the Carpathians obliterated in their rise. Geo-Eco-Marina, 27, 105–123.
https://doi.org/10.5281/zenodo.5795054
Verma, M. K., Ahlbrandt, T. S. and Al-Gailani, M. 2004. Petroleum reserves and undiscovered resources in the total petroleum systems of Iraq: reserve growth and production implications. GeoArabia, 9(3), 51–74.
https://doi.org/10.2113/geoarabia090351
qexploration. American Association of Petroleum Geologists Bulletin, 64, 916–926.
https://doi.org/10.1306/2F9193D2-16CE-11D7-8645000102C1865D
Waples, D. W. 1998. Basin modeling: how well have we done? In Basin Modeling: Practice and Progress (Düppenbecker, S. J. and Iliffe, J. E., eds). Geological Society, London.
https://doi.org/10.1144/GSL.SP.1998.141.01.01
Więcław, D., Kotarba, M. J., Kowalski, A. and Koltun, Y. 2012. Origin and maturity of oils in the Ukrainian Carpathians and their Mesozoic basement. Geological Quarterly, 56(1), 153–168.
Xie, S., Sun, B., Yan, D., Xiao, L. and Wei, L. 2006. Leaf cuticular characters of ginkgo and implications for paleoatmospheric CO2 in the Jurassic. Progress in Natural Science, 16, 258–263.
Zhabina, N. M., Shlapinsky, V. Y., Prykhodko, M. G., Anikeyeva, O. V. and Machalsky, D. V. 2017. The generalizated stratigraphic scheme of the Jurassic of western Ukraine. Geological Journal, 361(4), 9–22.
https://doi.org/10.30836/igs.1025-6814.2017.4.121165