Wave parameters form the base for the design of coastal structures. For this purpose, commonly modelled wave properties are employed. This approach is usually adequate in open ocean conditions where spatial variations in wave properties are normally quite limited. The situation is different in nearshore areas of complicated shapes, where wave properties can be highly variable. In such instances, long and sufficiently detailed wave measurements for model validation are usually unavailable. The use of default settings of wave models means that possible errors remain unknown, and employing data with substantial uncertainties could lead to overdimensioned structures or structural failures. We address the magnitude of possible errors in such conditions by comparing the output of simple wave models (such as the fetch-based SPM model or the SWAN model forced with one-point homogenous wind) and the sophisticated multi-nested SWAN wave model forced with ERA5 winds with recent wave measurements in various nearshore locations in the eastern Baltic Sea. We use records of different length spanning over more than ten years. While in some locations simple models or models forced with homogenous wind yield acceptable results, in most areas more sophisticated models are needed to adequately replicate wave properties. The outcomes of our analysis provide several site-specific hints for practical coastal engineering.
Baltic Sea Hydrographic Commission. 2013. Baltic Sea Bathymetry Database version 0.9.3.
https://www.bshc.pro/data/ (accessed 2020-02-15).
Barua, D. K. 2005. Wave hindcasting. In Encyclopedia of Coastal Science (Schwartz, M. L., ed.). Encyclopedia of Earth Science Series. Springer, Dordrecht, 1060–1062.
https://doi.org/10.1007/1-4020-3880-1_347
Björkqvist, J.-V., Tuomi, L., Fortelius, C., Pettersson, H., Tikka, K. and Kahma, K. K. 2017. Improved estimates of nearshore wave conditions in the Gulf of Finland. Journal of Marine Systems, 171, 43–53.
https://doi.org/10.1016/j.jmarsys.2016.07.005
Björkqvist, J.-V., Lukas, I., Alari, V., van Vledder, G. P., Hulst, S., Pettersson, H. et al. 2018. Comparing a 41-year model hindcast with decades of wave measurements from the Baltic Sea. Ocean Engineering, 152, 57–71.
https://doi.org/10.1016/j.oceaneng.20 18.01.048
Björkqvist, J.-V., Rikka, S., Alari, V., Männik, A., Tuomi, L. and Pettersson, H. 2020. Wave height return periods from combined measurement–model data: a Baltic Sea case study. Natural Hazards and Earth System Science, 20(12), 3593–3609.
https://doi.org/10.5194/nhess-20-3593-2020
Booij, N., Ris, R. C. and Holthuijsen, L. H. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research. Oceans, 104(C4), 7649–7666.
https://doi.org/10.1029/98JC02622
ECMWF (European Centre for Medium-Range Weather Forecasts). 2006. IFS documentation Cy41r2 – part IV: physical processes.
https://www.ecmwf.int/en/elibrary/79697-ifs-documentation-cy41r2-part-iv-physical-processes (accessed 2023-02-07).
EEA (Estonian Environment Agency). 2023. Ajaloolised ilmaandmed (Historical weather data).
https://www.ilmateenistus.ee/kliima/ajaloolised-ilmaandmed/ (accessed 2023-09-01).
FMI (Finnish Meteorological Institute). 2023. Download observations.
https://en.ilmatieteenlaitos.fi/download-observations (accessed 2023-09-01).
Giudici, A., Jankowski, M. Z., Männikus, R., Najafzadeh, F., Suursaar, Ü. and Soomere, T. 2023. A comparison of Baltic Sea wave properties simulated using two modelled wind data sets. Estuarine, Coastal and Shelf Science, 290, 108401.
https://doi.org/10.1016/j.ecss.2023.108401
Hanes, D. M. and Erikson, L. H. 2013. The significance of ultra-refracted surface gravity waves on sheltered coasts, with application to San Francisco Bay. Estuarine, Coastal and Shelf Science, 133, 129–136.
https://doi.org/10.1016/j.ecss.2013.08.022
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J. et al. 2018. ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
https://doi.org/10.24381/cds.bd0915c6 (accessed 2023-09-01).
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J. et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049.
https://doi.org/10.1002/qj.3803
Huttula, T. 1994. Suspended sediment transport in Lake Säkylän Pyhäjärvi. Aqua Fennica, 24(2), 171–185.
Kamphuis, J. W. 2010. Introduction to Coastal Engineering and Management. 2nd ed. World Scientific, Singapore.
https://doi.org/10.1142/7021
Keevallik, S. 2003. Possibilities of reconstruction of the wind regime over Tallinn Bay. Proceedings of the Estonian Academy of Sciences. Engineering, 9(3), 209–219.
https://doi.org/10.3176/eng.2003.3.04
Keevallik, S. and Vint, K. 2012. Influence of changes in the station location and measurement routine on the homogeneity of the temperature, wind speed and precipitation time series. Estonian Journal of Engineering, 18(3), 302–313.
https://doi.org/10.3176/eng.2012.4.02
Keevallik, S., Soomere, T., Pärg, R. and Žukova, V. 2007. Outlook for wind measurement at Estonian automatic weather stations. Proceedings of the Estonian Academy of Sciences. Engineering, 13(3), 234−251.
https://doi.org/10.3176/eng.2007.3.05
Kudryavtseva, N., Kussembayeva, K., Rakisheva, Z. B. and Soomere, T. 2019. Spatial variations in the Caspian Sea wave climate in 2002–2013 from satellite altimetry. Estonian Journal of Earth Sciences, 68(4), 225–240.
https://doi.org/10.3176/earth.2019.16
Launiainen, J. and Laurila, T. 1984. Marine wind characteristics in the northern Baltic Sea. Finnish Marine Research, 250, 52–86.
Lorenz, M. and Gräwe, U. 2023. Uncertainties and discrepancies in the representation of recent storm surges in a non-tidal semi-enclosed basin: a hindcast ensemble for the Baltic Sea. Ocean Science, 19(6), 1753–1771.
https://doi.org/10.5194/os-19-1753-2023
Massel, S. R. 1989. Hydrodynamics of Coastal Zones. Elsevier, Amsterdam.
Massel, S. R. 2013. Ocean Surface Waves: Their Physics and Prediction. 2nd ed. World Scientific, Singapore.
https://doi.org/10.1142/8682
Myrberg, K. 1997. Sensitivity tests of a two-layer hydrodynamic model in the Gulf of Finland with different atmospheric forcings. Geophysica, 33(2), 69–98.
Najafzadeh, F., Jankowski, M. Z., Giudici, A., Männikus, R., Suursaar, Ü., Viška, M. and Soomere T. 2024. Spatiotemporal variability of wave climate in the Gulf of Riga. Oceanologia, 66(1), 56–77.
https://doi.org/10.1016/j.oceano.2023.11.001
Pettersson, H., Lindow, H. and Brüning, T. 2013. Wave climate in the Baltic Sea 2012. HELCOM Baltic Sea Environment Fact Sheet 2013.
https://helcom.fi/wp-content/uploads/2019/08/Wave_ climate_in_the_Baltic_Sea_2012_BSEFS2013.pdf
(accessed 2024-03-10).
Seymour, R. J. 1977. Estimating wave generation on restricted fetches. Journal of the Waterway, Port, Coastal and Ocean Division, 103(2), 251–263.
https://doi.org/10.1061/JWPCDX.0000026
Soomere, T. 2001. Extreme wind speeds and spatially uniform wind events in the Baltic Proper. Proceedings of the Estonian Academy of Sciences. Engineering, 7(3), 195–211.
https://doi.org/10.3176/eng.2001.3.01
Soomere, T. 2003. Anisotropy of wind and wave regimes in the Baltic Proper. Journal of Sea Research, 49(4), 305–316.
https://doi.org/10.1016/S1385-1101(03)00034-0
Soomere, T. 2005. Wind wave statistics in Tallinn Bay. Boreal Environment Research, 10(2), 103–118.
Soomere, T. and Eelsalu, M. 2014. On the wave energy potential along the eastern Baltic Sea coast. Renewable Energy, 71, 221–233.
https://doi.org/10.1016/j.renene.2014.05.025
Soomere, T. and Keevallik, S. 2003. Directional and extreme wind properties in the Gulf of Finland. Proceedings of the Estonian Academy of Sciences. Engineering, 9(2), 73–90.
https://doi.org/10.3176/eng.2003.2.01
Soomere, T. and Räämet, A. 2011. Spatial patterns of the wave climate in the Baltic Proper and the Gulf of Finland. Oceanologia, 53(S1), 335–371.
https://doi.org/10.5697/oc.53-1-TI.335
Soomere, T., Myrberg, K., Leppäranta, M. and Nekrasov, A. 2008. The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997–2007. Oceanologia, 50(3), 287–362.
Suursaar, Ü. 2010. Waves, currents and sea level variations along the Letipea–Sillamäe coastal section of the southern Gulf of Finland. Oceanologia, 52(3), 391–416.
http://dx.doi.org/10.5697/oc.52-3.391
Suursaar, Ü. 2013. Locally calibrated wave hindcasts in the Estonian coastal sea in 1966–2011. Estonian Journal of Earth Sciences, 62(1), 42–56.
https://doi.org/10.3176/earth.2013.05
Suursaar, Ü. 2015. Analysis of wave time series in the Estonian coastal sea in 2003–2014. Estonian Journal of Earth Sciences, 64(4), 289–304.
https://doi.org/10.3176/earth.2015.35
Suursaar, Ü. 2023. Variations in wind velocity components and average air flow properties at Estonian coastal stations in 1966–2021; Sõrve Peninsula case study. Estonian Journal of Earth Sciences, 72(2), 197–210.
https://doi.org/10.3176/earth.2023.85
Suursaar, Ü. and Kullas, T. 2009. Decadal variations in wave heights off Kelba, Saaremaa Island, and their relationships with changes in wind climate. Oceanologia, 51(1), 39–61.
http://dx.doi.org/10.5697/oc.51-1.039
Suursaar, Ü., Jaagus, J., Kont, A., Rivis, R. and Tõnisson, H. 2008. Field observations on hydrodynamic and coastal geomorphic processes off Harilaid Peninsula (Baltic Sea) in winter and spring 2006–2007. Estuarine, Coastal and Shelf Science, 80(1), 31–41.
https://doi.org/10.1016/j.ecss.2008.07.007
Suursaar, Ü., Alari, V. and Tõnisson, H. 2014. Multi-scale analysis of wave conditions and coastal changes in the north-eastern Baltic Sea. Journal of Coastal Research, 70(SP1), 223–228.
https://doi.org/10.2112/SI70-038.1
Tolvanen, H. and Suominen, T. 2005. Quantification of openness and wave activity in archipelago environments. Estuarine, Coastal and Shelf Science, 64(2–3), 436–446.
https://doi.org/10.1016/j.ecss.2005.03.001
USACE (U.S. Army Coastal Engineering Research Center). 1984. Shore Protection Manual. Vol. 1, 3rd ed. U.S. Government Printing Office, Washington D.C.
WAVE. 2013. Delft3D-WAVE User Manual. 3.03 ed. Deltares, Delft.
Žukova, V. 2009. Eesti rannikujaamade võimalused meretuule hindamisel (Possibilities of estimation of marine winds from Estonian coastal stations). MSc thesis. Tallinn University of Technology, Estonia.