ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Lake basin development in the Holocene and its impact on the sedimentation dynamics in a small lake (southern Estonia); pp. 159–171
PDF | doi: 10.3176/earth.2011.3.04

Author
Jaanus Terasmaa
Abstract

Small lakes and their sediments are widely used for palaeolimnological reconstructions. Often only one core from the deepest part of the lake is used for reconstructing the lake catchment development, water-level changes and climate. To interpret palaeoinformation correctly, it is necessary to understand the spatio-temporal dynamics and the essence of lake basin evolution (topography, sedimentation zones, etc.) during the selected time period. The current study focuses on reconstructing the development of Lake Väike Juusa (southern Estonia) during the Holocene with the help of 3D digital elevation models compiled for the palaeolake stages at 9000 BP, 8000 BP, 4000 BP, 2000 BP and the present. The results suggest that we have to consider lake stages as completely different lakes with different sedimentation patterns – the hypsocraphic curve of Lake Väike Juusa was convex at the beginning of the Holocene and is concave nowadays. The proportion of the accumulation areas varied from 6% to 60% at the beginning of the Holocene and is around 30% nowadays. In order to understand lake basin development and water-level changes, the sampling sites should be selected close to the transitional zone and more than one core from a lake is needed. Commonly the sites located spatially rather close to each other have significantly different sedimentation patterns. Three-dimensional digital elevation models of palaeolake basins are useful tools for visualizing data and for hypothesizing about possible effects of lake-level fluctuations on the lake and its sedimentation regime.

References

Allen, J. R. L. 1985. Principles of Physical Sedimentology. George Allen and Unwin, Boston, 272 pp.

Bengtsson, L. & Enell, M. 1986. Chemical analysis. In Handbook of Holocene Palaeoecology and Palaeo­hydrology (Berglund, B. E., ed.), pp. 423–451. John Wiley & Sons, Chichester–New York.

Blais, J. M. & Kalff, J. 1995. The influence of lake morphometry on sediment focusing. Limnology and Oceanography, 40, 582–588.
http://dx.doi.org/10.4319/lo.1995.40.3.0582

Boyle, J. F. 2001. Inorganic geochemical methods in palaeo­limnology. In Tracking Environmental Change Using Lake Sediments. Volume 2 – Physical and Geochemical Methods (Last, W. M. & Smol, J. P., eds), pp. 83–141. Kluwer Academic Publishers, London.

Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon, 51, 337–360.

Davis, M. B. & Ford, M. S. 1982. Sediment focusing in Mirror Lake, New Hampshire. Limnology and Oceanography, 27, 137–150.
http://dx.doi.org/10.4319/lo.1982.27.1.0137

Dearing, J. A. 1997. Sedimentary indicators of lake-level changes in the humid temperate zone: a critical review. Journal of Paleolimnology, 18, 1–14.
http://dx.doi.org/10.1023/A:1007916210820

Digerfeldt, G. 1986. Studies on past lake-level fluctuations. In Handbook of Holocene Palaeoecology and Palaeo­hydrology (Berglund, B. E., ed.), pp. 127–143. John Wiley and Sons, Chichester–New York.

Eronen, M., Hyvärinen, H. & Zetterberg, P. 1999. Holocene humidity changes in northern Finnish Lapland inferred from lake sediments and submerged Scots pines dated by tree-rings. The Holocene, 9, 569–580.
http://dx.doi.org/10.1191/095968399677209885

Folk, R. L. 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, Texas, 184 pp.

Gilbert, R. 2003. Spatially irregular sedimentation in a small, morphologically complex lake: implication for paleo­environmental studies. Journal of Paleolimnology, 29, 209–220.
http://dx.doi.org/10.1023/A:1023287009148

Håkanson, L. & Jansson, M. 1983. Principles of Lake Sedimentology. Springer-Verlag, Berlin, 315 pp.

Hannon, G. E. & Gaillard, M.-J. 1997. The plant–macrofossil record of past lake-level changes. Journal of Paleo­limnology, 18, 15–28.
http://dx.doi.org/10.1023/A:1007958511729

Heiri, O., Lotter, A. F. & Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.
http://dx.doi.org/10.1023/A:1008119611481

Jaagus, J. & Tarand, A. 1988. Sademete territoriaalne jaotus Eestis [Territorial distribution of precipitation in Estonia]. Yearbook of the Estonian Geographical Society, 24, 5–18 [in Estonian].

Kangur, M., Koff, T., Punning, J.-M., Vainu, M. & Vandel, E. 2009. Lithology and biostratigraphy of the Holocene sediment sequence in L. Ķūžu, Vidzeme Heights (Central Latvia). Geological Quarterly, 53, 199–208.

Koff, T., Punning, J.-M., Sarmaja-Korjonen, K. & Martma, T. 2005. Ecosystem responses to early and late Holocene lake-level changes in Lake Juusa, southern Estonia. Polish Journal of Ecology, 53, 553–570.

Konert, M. & Vandenberghe, J. 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology, 44, 523–535.
http://dx.doi.org/10.1046/j.1365-3091.1997.d01-38.x

Last, W. M. 2001. Mineralogical analysis of lake sediments. In Tracking Environmental Change Using Lake Sediments. Volume 2 – Physical and Geochemical Methods (Last, W. M. & Smol, J. P., eds), pp. 143–187. Kluwer Academic Publishers, London.

Lehman, J. T. 1975. Reconstructing the rate of accumulation of lake sediment: the effect of sediment focusing. Quaternary Research, 5, 541–550.
http://dx.doi.org/10.1016/0033-5894(75)90015-0

Magny, M., Begeot, C., Guiot, J., Marguet, A. & Billaud, Y. 2003. Reconstruction and palaeoclimatic interpretation of mid-Holocene vegetation and lake-level changes at Saint-Jorioz, lake Annecy, French Pre-Alps. The Holocene, 13, 265–275.
http://dx.doi.org/10.1191/0959683603hl612rp

Nesje, A. & Dahl, S. O. 2001. The Greenland 8200 cal. yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences. Journal of Quaternary Sciences, 16, 155–166.
http://dx.doi.org/10.1002/jqs.567

Ojala, A. E. K. & Saarinen, T. 2002. Paleosecular variation of the earth’s magnetic field during the last 10 000 yr based on an annually laminated sediment of Lake Nautajärvi, central Finland. The Holocene, 12, 391–400.
http://dx.doi.org/10.1191/0959683602hl551rp

Punning, J.-M. & Tõugu, K. 2000. C/N ratio and fossil pigments in sediments of some Estonian lakes: an evidence of human impact and Holocene environmental change. Environmental Monitoring and Assessment, 64, 549–567.
http://dx.doi.org/10.1023/A:1006325606289

Punning, J.-M. & Puusepp, L. 2007. Diatom assemblages in sediments of Lake Juusa, Southern Estonia with an assessment of their habitat. Hydrobiologia, 586, 27–41.
http://dx.doi.org/10.1007/s10750-006-0474-8

Punning, J.-M., Terasmaa, J., Koff, T. & Alliksaar, T. 2003. Seasonal fluxes of particulate matter in a small closed lake in northern Estonia. Water, Air and Soil Pollution, 149, 77–92.
http://dx.doi.org/10.1023/A:1025603614583

Punning, J.-M., Puusepp, L. & Koff, T. 2004. The spatial variability of diatoms, subfossil macrophytes and OC/N values in surface sediments of Lake Väike Juusa (southern Estonia). Proceedings of the Estonian Academy of Sciences, Biology, Ecology, 53, 147–160.

Punning, J.-M., Terasmaa, J. & Kadastik, E. 2005a. Grain size of the bottom sediments of Lake Juusa (southern Estonia) as the indicator of water level fluctuations. Proceedings of the Estonian Academy of Sciences, Geology, 54, 40–51.

Punning, J.-M., Koff, T., Kadastik, E. & Mikomägi, A. 2005b. Holocene lake level fluctuations recorded in the sediment composition of Lake Juusa, southeastern Estonia. Journal of Paleolimnology, 34, 377–390.
http://dx.doi.org/10.1007/s10933-005-6751-0

Punning, J.-M., Koff, T., Sakson, M. & Kangur, M. 2007a. Holocene pattern of organic carbon accumulation in a small lake in Estonia. Polish Journal of Ecology, 55, 5–14.

Punning, J.-M., Boyle, J. F., Terasmaa, J., Vaasma, T. & Mikomägi, A. 2007b. Changes in lake sediment structure and composition caused by human impact: repeated studies of Lake Martiska, Estonia. The Holocene, 17, 145–151.
http://dx.doi.org/10.1177/0959683607073297

Puusepp, L. 2011. Spatio-Temporal Variability of Diatom Assemblages in Lake Sediments. Dissertation on Natural Sciences 24, Tallinn University, 142 pp.

Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J. & Weyhenmeyer, C. E. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon, 51, 1111–1150.

Reintam, L. 1995. Muldade kujunemine [Formation of the soils]. In Eesti. Loodus (Raukas, A., ed.), pp. 419–429. Valgus, Eesti Entsüklopeediakirjastus, Tallinn [in Estonian].

Richard, B., Renberg, I. & Brännvall, M. L. 2001. A whole-basin study of sediment accumulation using stable lead isotopes and fly-ash particles in an acidified lake, Sweden. Limnology and Oceanography, 46, 176–187.

Saarse, L. & Harrison, S. P. 1992. Holocene lake-level changes in the eastern Baltic region. In Estonia: Man and Nature (Kaare, T. et al., eds), pp. 6–20. Estonian Academy of Sciences and Estonian Geographical Society, Tallinn.

Snowball, I., Zillén, L. & Gaillard, M.-J. 2002. Rapid early-Holocene environmental changes in northern Sweden based on studies of two varved lake-sediment sequences. The Holocene, 12, 7–16.
http://dx.doi.org/10.1191/0959683602hl515rp

Tarasov, P. E. & Harrison, S. P. 1989. Lake status records from the former Soviet Union and Mongolia: a continental-scale synthesis. Paläoklimaforschung/Palaeoclimate Research, 25, 115–130.

Terasmaa, J. 2005a. Seston Fluxes and Sedimentation Dynamics in Small Estonian Lakes. Dissertation on Natural Sciences 11, Tallinn University, 199 pp.

Terasmaa, J. 2005b. Bottom topography and sediment lithology in two small lakes in Estonia. Proceedings of the Estonian Academy of Sciences, Biology, Ecology, 54, 171–189.

Terasmaa, J. 2009. 3D digital height models as a tool for reconstructing the impact of lake-level fluctuations on the sedimentation dynamics in a small lake (Southern Estonia). In Abstract Volume: 11th International Paleo­limnology Symposium (Caballero, M., Ortega, B., Lozano, S., Zarate, P., Rosas, J., Sosa, S. & Rodriquez, A., eds), p. 144.

Yang, H., Rose, N. L., Battarbee, R. W. & Monteith, D. 2002. Trace metal distribution in the sediments of the whole lake basin for Lochnagar, Scotland: a palaeolimnological assessment. Hydrobiologia, 479, 51–61.
http://dx.doi.org/10.1023/A:1021054112496

Yu, G. 1998. European lake status data base: continental-scale synthesis for the Holocene. Paläoklimaforschung/Palaeo­climate Research, 25, 99–114.

Yu, G. & Harrison, S. P. 1995. Holocene changes in atmospheric circulation patterns as shown by lake status changes in northern Europe. Boreas, 24, 260–268.
http://dx.doi.org/10.1111/j.1502-3885.1995.tb00778.x

Back to Issue