We analyse potential changes in the average and cumulative properties of wind waves owing to the loss of sea ice in regions that are currently seasonally ice-covered. The focus is on the Gulf of Riga, located in the eastern Baltic Sea at higher temperate latitudes. This water body is almost isolated from the rest of the Baltic Sea in terms of wave and ice fields. We compare the statistical properties of wave time series from a hypothetical ice-free wave simulation for the period 1990–2021 with truncated ones in which waves are ignored during the ice season. These simulations are made using the SWAN model with a spatial resolution of about 1 nautical mile for the whole gulf and down to 300 m in its nearshore, and forced with ERA5 wind data. The presence of seasonal ice cover insignificantly impacts the formal average wave properties, but the total loss of sea ice will significantly increase the levels of annual cumulative wave energy and its flux, and will thus add considerable energy to coastal processes in this water body.
Adell, A., Almström, B., Kroon, A., Larson, M., Uvo, C. B. and Hallin, C. 2023. Spatial and temporal wave climate variability along the south coast of Sweden during 1959–2021. Regional Studies in Marine Science, 63, 103011.
https://doi.org/10.1016/j.rsma.2023.103011
Alkama, R., Koffi, E. N., Vavrus, S. J., Diehl, T., Francis, J. A., Stroeve, J. et al. 2020. Wind amplifies the polar sea ice retreat. Environmental Research Letters, 15(12), 124022.
https://doi.org/10.1088/1748-9326/abc379
Bierstedt, S. E., Hünicke, B. and Zorita, E. 2015. Variability of wind direction statistics of mean and extreme wind events over the Baltic Sea region. Tellus A: Dynamic Meteorology and Oceanography, 67(1), 29073.
https://doi.org/10.3402/tellusa.v67.29073
Björkqvist, J.-V., Tuomi, L., Tollman, N., Kangas, A., Pettersson, H., Marjamaa, R. et al. 2017. Characteristic properties of extreme wave events observed in the northern Baltic Proper, Baltic Sea. Natural Hazards and Earth System Sciences, 17(9), 1653–1658.
https://doi.org/10.5194/nhess-17-1653-2017
Björkqvist, J.-V., Lukas, I., Alari, V., Vledder, P. G. van, Hulst, S., Pettersson, H. et al. 2018. Comparing a 41-year model hindcast with decades of wave measurements from the Baltic Sea. Ocean Engineering, 152, 57–71.
https://doi.org/10.1016/j.oceaneng.2018.01.048
Booij, N., Ris, R. C. and Holthuijsen, L. H. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649–7666.
https://doi.org/10.1029/98JC02622
Collins III, C. O., Rogers, W. E., Marchenko, A. and Babanin, A. V. 2015. In situ measurements of an energetic wave event in the Arctic marginal ice zone. Geophysical Research Letters, 42(6), 1863–1870.
https://doi.org/10.1002/2015GL063063
ECMWF (European Centre for Medium-Range Weather Forecasts). 2006. IFS Documentation CY41R2 – Part IV: Physical Processes.
https://www.ecmwf.int/en/elibrary/79697-ifs-documentation-cy41r2-part-iv-physical-processes (accessed 2023-02-07).
Eelsalu, M., Org, M. and Soomere, T. 2014. Visually observed wave climate in the Gulf of Riga. In The 6th IEEE/OES Baltic Symposium “Measuring and Modeling of Multi-Scale Interactions in the Marine Environment”, 27–29 May 2014, Tallinn, Estonia. IEEE Conference Publications.
https://doi.org/10.1109/BALTIC.2014.6887829
Giudici, A., Jankowski, M. Z., Männikus, R., Najafzadeh, F., Suursaar, Ü. and Soomere, T. 2023. A comparison of Baltic Sea wave properties simulated using two modelled wind data sets. Estuarine, Coastal and Shelf Science, 290, 108401.
https://doi.org/10.1016/j.ecss.2023.108401
Hari, P., Aakala, T., Hilasvuori, E., Häkkinen, R., Korhola, A., Korpela, M. et al. 2017. Reliability of temperature signal in various climate indicators from northern Europe. PLOS ONE, 12(6), e0180042.
https://doi.org/10.1371/journal.pone.0180042
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Muñoz-Sabater, J. et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049.
https://doi.org/10.1002/qj.3803
Huang, C., Zhu, L., Ma, G., Meadows, G. A. and Xue, P. 2021. Wave climate associated with changing water level and ice cover in Lake Michigan. Frontiers in Marine Science, 8, 746916.
https://doi.org/10.3389/fmars.2021.746916
Hünicke, B., Zorita, E., Soomere, T., Madsen, K. S., Johansson, M. and Suursaar, Ü. 2015. Recent change – sea level and wind waves. In The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies. Springer, Cham, 155–185.
https://doi.org/10.1007/978-3-319-16006-1_9
Iwasaki, S. 2022. Role of sea ice on winter wave power and its interannual variability in the Sea of Okhotsk: natural breakwater modified by surface wind changes. Progress in Oceanography, 210, 102944.
https://doi.org/10.1016/j.pocean.2022.102944
Jevrejeva, S., Drabkin, V. V., Kostjukov, J., Lebedev, A. A., Leppäranta, M., Mironov, Y. U. et al. 2004. Baltic Sea ice seasons in the twentieth century. Climate Research, 25(3), 217–227.
https://doi.org/10.3354/cr025217
Jylhä, K., Fronzek, S., Tuomenvirta, H., Carter, T. R. and Ruosteenoja, K. 2008. Changes in frost, snow and Baltic sea ice by the end of the twenty-first century based on climate model projections for Europe. Climate Change, 286, 441–462.
https://doi.org/10.1007/s10584-007-9310-z
Kudryavtseva, N. and Soomere, T. 2017. Satellite altimetry reveals spatial patterns of variations in the Baltic Sea wave climate. Earth System Dynamics, 8(3), 697–706.
https://doi.org/10.5194/esd-8-697-2017
Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S. et al. 2019. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. The Cryosphere, 13(1), 49–78.
https://doi.org/10.5194/tc-13-49-2019
Leppäranta, M. and Myrberg, K. 2009. The ice of the Baltic Sea. In Physical Oceanography of the Baltic Sea. Springer, Berlin, Heidelberg, 219–260.
https://doi.org/10.1007/9 78-3-540-79703-6_7
Liu, A. K. and Mollo-Christensen, E. 1988. Wave propagation in a solid ice pack. Journal of Physical Oceanography, 18(11), 1702–1712.
https://doi.org/10.1175/1520-0485(1988)018<1702:WPIASI>2.0.CO;2
Luomaranta, A., Ruosteenoja, K., Jylhä, K., Gregow, H., Haapala, J. and Laaksonen, A. 2014. Multimodel estimates of the changes in the Baltic Sea ice cover during the present century. Tellus, 66(1), 22617.
https://doi.org/10.3402/tellusa.v66.22617
Männikus, R., Soomere, T. and Viška, M. 2020. Variations in the mean, seasonal and extreme water level on the Latvian coast, the eastern Baltic Sea, during 1961–2018. Estuarine Coastal and Shelf Science, 245, 106827.
https://doi.org/10.1016/j.ecss.2020.106827
Manson, G. K. 2022. Nearshore sediment transport as influenced by changing sea ice, north shore of Prince Edward Island, Canada. Canadian Journal of Earth Sciences, 59(11), 935–944.
https://doi.org/10.1139/cjes-2020-0150
Mostert, W. and Deike, L. 2020. Inertial energy dissipation in shallow-water breaking waves. Journal of Fluid Mechanics, 890, A12.
https://doi.org/10.1017/jfm.2020.83
Najafzadeh, F., Kudryavtseva, N. and Soomere, T. 2021. Effects of large-scale atmospheric circulation on the Baltic Sea wave climate: application of EOF method on multi-mission satellite altimetry data. Climate Dynamics, 57(11–12), 3465–3478.
https://doi.org/10.1007/s00382-021-05874-x
Najafzadeh, F., Kudryavtseva, N., Soomere, T. and Giudici, A. 2022. Effect of ice cover on wave statistics and wave-driven processes in the northern Baltic Sea. Boreal Environment Research, 27, 97–116.
Najafzadeh, F., Jankowski, M. Z., Giudici, A., Männikus, R., Suursaar, Ü., Soomere, T. and Viška, M. 2024. Spatiotemporal variability of wave climate in the Gulf of Riga. Oceanologia, early access.
https://doi.org/10.1016/j.oceano.2023.11.001
Omstedt, A. and Chen, D. 2001. Influence of atmospheric circulation on the maximum ice extent in the Baltic Sea. Journal of Geophysical Research: Oceans, 106(C3), 4493–4500.
https://doi.org/10.1029/1999JC000173
Orviku, K., Jaagus, J., Kont, A., Ratas, U. and Rivis, R. 2003. Increasing activity of coastal processes associated with climate change in Estonia. Journal of Coastal Research, 19(2), 364–375.
Palosuo, E. 1953. A Treatise on Severe Ice Conditions in the Central Baltic. Merentutkimuslaitoksen Julkaisu/Havsforskningsinstitutets Skrift, 156. Finnish Institute of Marine Research, Helsinki.
Pindsoo, K. and Soomere, T. 2020. Basin-wide variations in trends in water level maxima in the Baltic Sea. Continental Shelf Research, 193, 104029.
https://doi.org/10.1016/j.csr.2019.104029
Pryor, S. C. and Barthelmie, R. J. 2003. Long‐term trends in near‐surface flow over the Baltic. International Journal of Climatology, 23(3), 271–289.
https://doi.org/10.1002/joc.878
Räämet, A. and Soomere, T. 2010. The wave climate and its seasonal variability in the northeastern Baltic Sea. Estonian Journal of Earth Sciences, 59(1), 100–113.
https://doi.org/10.3176/earth.2010.1.08
Ruest, B., Neumeier, U., Dumont, D., Bismuth, E., Senneville, S. and Caveen, J. 2016. Recent wave climate and expected future changes in the seasonally ice-infested waters of the Gulf of St. Lawrence, Canada. Climate Dynamics, 46(1–2), 449–466.
https://doi.org/10.1007/s00382-015-2592-3
Ruosteenoja, K., Vihma, T. and Venäläinen, A. 2019. Projected changes in European and North Atlantic seasonal wind climate derived from CMIP5 simulations. Journal of Climate, 32(19), 6467–6490.
https://doi.org/10.1175/JCLI-D-19-0023.1
Rutgersson, A., Kjellström, E., Haapala, J., Stendel, M., Danilovich, I., Drews, M. et al. 2022. Natural hazards and extreme events in the Baltic Sea region. Earth System Dynamics, 13(1), 251–301.
https://doi.org/10.5194/esd-13-251-2022
Ryabchuk, D., Kolesov, A., Chubarenko, B., Spiridonov, M., Kurennoy, D. and Soomere, T. 2011. Coastal erosion processes in the eastern Gulf of Finland and their links with geological and hydrometeorological factors. Boreal Environment Research, 16(Suppl. A), 117–137.
Slater, T., Lawrence, I. R., Otosaka, I. N., Shepherd, A., Gourmelen, N., Jakob, L. et al. 2021. Review article: Earth’s ice imbalance. The Cryoshpere, 15(1), 233–246.
https://doi.org/10.5194/tc-15-233-2021
SMHI (Swedish Meteorological and Hydrological Institute) and FIMR (Finnish Meteorological Institute). 1982. An Ice Atlas for the Baltic Sea, Kattegat, Skagerrak and Lake Vänern. Sjöfartsverket, Norrköping.
Soomere, T. 2003. Anisotropy of wind and wave regimes in the Baltic Proper. Journal of Sea Research, 49(4), 305–316.
https://doi.org/10.1016/S1385-1101(03)00034-0
Soomere, T. 2023. Numerical simulations of wave climate in the Baltic Sea: a review. Oceanologia, 65(1), 117–140.
https://doi.org/10.1016/j.oceano.2022.01.004
Soomere, T. and Eelsalu, M. 2014. On the wave energy potential along the eastern Baltic Sea coast. Renewable Energy, 71, 221–233.
https://doi.org/10.1016/j.renene.2014.05.025
Squire, V. A. 2020. Ocean wave interactions with sea ice: a reappraisal. Annual Review of Fluid Mechanics, 52, 37–60.
https://doi.org/10.1146/annurev-fluid-010719-060301
Storch, H. von, Omstedt, A., Pawlak, J. and Reckermann, M. 2015. Introduction and Summary. In The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Springer, Cham, 1–22.
https://doi.org/10.1007/978-3-319-16006-1_1
Tavakoli, S. and Babanin, A. V. 2021. Wave energy attenuation by drifting and non-drifting floating rigid plates. Ocean Engineering, 226, 108717.
https://doi.org/10.1016/j.oceaneng.2021.108717
Thomson, J. 2022. Wave propagation in the marginal ice zone: connections and feedback mechanisms within the air–ice–ocean system. Philosophical Transactions of the Royal Society A, 380(2235), 20210251.
https://doi.org/10.1098/rsta.2021.0251
Tinz, B. 1996. On the relation between annual maximum extent of ice cover in the Baltic Sea and sea level pressure as well as air temperature field. Geophysica, 32(3), 319–341.
Torralba, V., Doblas-Reyes, F. J. and Gonzalez-Reviriego, N. 2017. Uncertainty in recent near-surface wind speed trends: a global reanalysis intercomparison. Environment Research Letters, 12(11), 114019.
https://doi.org/10.1088/1748-9326/aa8a58
Tuomi, L., Kahma, K. K. and Pettersson, H. 2011. Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environment Research, 16(6), 451–472.
Tuomi, L., Kanarik, H., Björkqvist, J.-V., Marjamaa, R., Vainio, J., Hordoir, R. et al. 2019. Impact of ice data quality and treatment on wave hindcast statistics in seasonally ice-covered seas. Frontiers in Earth Science, 7, 166.
https://doi.org/10.3389/feart.2019.00166
Urrego-Blanco, J. and Sheng, J. 2014. Formation and distribution of sea ice in the Gulf of St. Lawrence: a process-oriented study using a coupled ocean-ice model. Journal of Geophysical Research: Oceans, 119(10), 7099–7122.
https://doi.org/10.1002/2014JC010185
Vihma, T. and Haapala, J. 2009. Geophysics of sea ice in the Baltic Sea: a review. Progress in Oceanography, 80(3–4), 129–148.
https://doi.org/10.1016/j.pocean.2009.02.002
Wadhams, P. 1986. The seasonal ice zone. In The Geophysics of Sea Ice (Untersteiner, N., ed.). NATO Advanced Science Institutes Series. Springer, Boston, MA.
https://doi.org/10.1007/978-1-4899-5352-0_15
Wadhams, P., Squire, V. A., Ewing, J. A. and Pascal, R. W. 1986. The effect of the marginal ice zone on the directional wave spectrum of the ocean. Journal of Physical Oceanography, 16(2), 358–376.
https://doi.org/10.1175/1520-0485(1986)016<0358:TEOTMI>2.0.CO;2
Wang, J., Bai, X., Hu, H., Clites, A., Colton, M. and Lofgren, B. 2012. Temporal and spatial variability of Great Lakes ice cover, 1973–2010. Journal of Climate, 25(4), 1318–1329.
https://doi.org/10.1175/2011JCLI4066.1
Wang, L., Perrie, W., Long, Z., Blokhina, M., Zhang, G., Toulany, B. and Zhang, M. 2018. The impact of climate change on the wave climate in the Gulf of St. Lawrence. Ocean Modelling, 128, 87–101.
https://doi.org/10.1016/j.ocemod.2018.06.003
Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt, A. et al. 2021. Sea level dynamics and coastal erosion in the Baltic Sea region. Earth Systems Dynamics, 12(3), 871–898.
https://doi.org/10.5194/esd-12-871-2021
Winsor, P., Rodhe, J. and Omstedt, A. 2001. Baltic Sea ocean climate: an analysis of 100 yr of hydrographic data with focus on the freshwater budget. Climate Research, 18(1–2), 5–15.
https://doi.org/10.3354/cr018005
Zhang, N., Li, S., Wu, Y., Wang, K.-H., Zhang, Q., You, Z. J. and Wang, J. 2020. Effects of sea ice on wave energy flux distribution in the Bohai Sea. Renewable Energy, 162, 2330–2343.
https://doi.org/10.1016/j.renene.2020.10.036
Zhang, L., Ren, G., Xu, M., Meng, F., Liao, R., Liu, D. et al. 2023. Spatiotemporal patterns of sea ice cover in the marginal seas of East Asia. Atmosphere, 14(2), 207.
https://doi.org/10.3390/atmos14020207