ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Research article
Impact of changes in sea ice cover on the wave climate of semi-enclosed, seasonally ice-covered water bodies at temperate latitudes: a case study in the Gulf of Riga; pp. 26–36
PDF | https://doi.org/10.3176/earth.2024.03

Authors
Fatemeh Najafzadeh, Tarmo Soomere
Abstract

We analyse potential changes in the average and cumulative properties of wind waves owing to the loss of sea ice in regions that are currently seasonally ice-covered. The focus is on the Gulf of Riga, located in the eastern Baltic Sea at higher temperate latitudes. This water body is almost isolated from the rest of the Baltic Sea in terms of wave and ice fields. We compare the statistical properties of wave time series from a hypothetical ice-free wave simulation for the period 1990–2021 with truncated ones in which waves are ignored during the ice season. These simulations are made using the SWAN model with a spatial resolution of about 1 nautical mile for the whole gulf and down to 300 m in its nearshore, and forced with ERA5 wind data. The presence of seasonal ice cover insignificantly impacts the formal average wave properties, but the total loss of sea ice will significantly increase the levels of annual cumulative wave energy and its flux, and will thus add considerable energy to coastal processes in this water body.

References

Adell, A., Almström, B., Kroon, A., Larson, M., Uvo, C. B. and Hallin, C. 2023. Spatial and temporal wave climate variability along the south coast of Sweden during 1959–2021. Regional Studies in Marine Science63, 103011. 
https://doi.org/10.1016/j.rsma.2023.103011  

Alkama, R., Koffi, E. N., Vavrus, S. J., Diehl, T., Francis, J. A., Stroeve, J. et al. 2020. Wind amplifies the polar sea ice retreat. Environmental Research Letters15(12), 124022. 
https://doi.org/10.1088/1748-9326/abc379  

Bierstedt, S. E., Hünicke, B. and Zorita, E. 2015. Variability of wind direction statistics of mean and extreme wind events over the Baltic Sea region. Tellus A: Dynamic Meteorology and Oceanography67(1), 29073. 
https://doi.org/10.3402/tellusa.v67.29073  

Björkqvist, J.-V., Tuomi, L., Tollman, N., Kangas, A., Pettersson, H., Marjamaa, R. et al. 2017. Characteristic properties of extreme wave events observed in the northern Baltic Proper, Baltic Sea. Natural Hazards and Earth System Sciences17(9), 1653–1658. 
https://doi.org/10.5194/nhess-17-1653-2017  

Björkqvist, J.-V., Lukas, I., Alari, V., Vledder, P. G. van, Hulst, S., Pettersson, H. et al. 2018. Comparing a 41-year model hindcast with decades of wave measurements from the Baltic Sea. Ocean Engineering152, 57–71. 
https://doi.org/10.1016/j.oceaneng.2018.01.048  

Booij, N., Ris, R. C. and Holthuijsen, L. H. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans104(C4), 7649–7666. 
https://doi.org/10.1029/98JC02622

Collins III, C. O., Rogers, W. E., Marchenko, A. and Babanin, A. V. 2015. In situ measurements of an energetic wave event in the Arctic marginal ice zone. Geophysical Research Letters42(6), 1863–1870. 
https://doi.org/10.1002/2015GL063063  

ECMWF (European Centre for Medium-Range Weather Forecasts). 2006. IFS Documentation CY41R2 – Part IV: Physical Processes.
https://www.ecmwf.int/en/elibrary/79697-ifs-documentation-cy41r2-part-iv-physical-processes (accessed 2023-02-07).

Eelsalu, M., Org, M. and Soomere, T. 2014. Visually observed wave climate in the Gulf of Riga. In The 6th IEEE/OES Baltic Symposium “Measuring and Modeling of Multi-Scale Interactions in the Marine Environment”, 27–29 May 2014, Tallinn, Estonia. IEEE Conference Publications. 
https://doi.org/10.1109/BALTIC.2014.6887829  

Giudici, A., Jankowski, M. Z., Männikus, R., Najafzadeh, F., Suursaar, Ü. and Soomere, T. 2023. A comparison of Baltic Sea wave properties simulated using two modelled wind data sets. Estuarine, Coastal and Shelf Science290, 108401. 
https://doi.org/10.1016/j.ecss.2023.108401  

Hari, P., Aakala, T., Hilasvuori, E., Häkkinen, R., Korhola, A., Korpela, M. et al. 2017. Reliability of temperature signal in various climate indicators from northern Europe. PLOS ONE12(6), e0180042. 
https://doi.org/10.1371/journal.pone.0180042  

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Muñoz-Sabater, J. et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society146(730), 1999–2049. 
https://doi.org/10.1002/qj.3803  

Huang, C., Zhu, L., Ma, G., Meadows, G. A. and Xue, P. 2021. Wave climate associated with changing water level and ice cover in Lake Michigan. Frontiers in Marine Science8, 746916. 
https://doi.org/10.3389/fmars.2021.746916  

Hünicke, B., Zorita, E., Soomere, T., Madsen, K. S., Johansson, M. and Suursaar, Ü. 2015. Recent change – sea level and wind waves. In The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies. Springer, Cham, 155–185. 
https://doi.org/10.1007/978-3-319-16006-1_9  

Iwasaki, S. 2022. Role of sea ice on winter wave power and its interannual variability in the Sea of Okhotsk: natural breakwater modified by surface wind changes. Progress in Oceanography210, 102944. 
https://doi.org/10.1016/j.pocean.2022.102944  

Jevrejeva, S., Drabkin, V. V., Kostjukov, J., Lebedev, A. A., Leppäranta, M., Mironov, Y. U. et al. 2004. Baltic Sea ice seasons in the twentieth century. Climate Research25(3), 217–227. 
https://doi.org/10.3354/cr025217  

Jylhä, K., Fronzek, S., Tuomenvirta, H., Carter, T. R. and Ruosteenoja, K. 2008. Changes in frost, snow and Baltic sea ice by the end of the twenty-first century based on climate model projections for Europe. Climate Change286, 441–462. 
https://doi.org/10.1007/s10584-007-9310-z  

Kudryavtseva, N. and Soomere, T. 2017. Satellite altimetry reveals spatial patterns of variations in the Baltic Sea wave climate. Earth System Dynamics8(3), 697–706. 
https://doi.org/10.5194/esd-8-697-2017  

Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S. et al. 2019. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. The Cryosphere13(1), 49–78. 
https://doi.org/10.5194/tc-13-49-2019  

Leppäranta, M. and Myrberg, K. 2009. The ice of the Baltic Sea. In Physical Oceanography of the Baltic Sea. Springer, Berlin, Heidelberg, 219–260. 
https://doi.org/10.1007/9 78-3-540-79703-6_7  

Liu, A. K. and Mollo-Christensen, E. 1988. Wave propagation in a solid ice pack. Journal of Physical Oceanography18(11), 1702–1712. 
https://doi.org/10.1175/1520-0485(1988)018<1702:WPIASI>2.0.CO;2  

Luomaranta, A., Ruosteenoja, K., Jylhä, K., Gregow, H., Haapala, J. and Laaksonen, A. 2014. Multimodel estimates of the changes in the Baltic Sea ice cover during the present century. Tellus66(1), 22617. 
https://doi.org/10.3402/tellusa.v66.22617  

Männikus, R., Soomere, T. and Viška, M. 2020. Variations in the mean, seasonal and extreme water level on the Latvian coast, the eastern Baltic Sea, during 1961–2018. Estuarine Coastal and Shelf Science245, 106827. 
https://doi.org/10.1016/j.ecss.2020.106827  

Manson, G. K. 2022. Nearshore sediment transport as influenced by changing sea ice, north shore of Prince Edward Island, Canada. Canadian Journal of Earth Sciences59(11), 935–944. 
https://doi.org/10.1139/cjes-2020-0150  

Mostert, W. and Deike, L. 2020. Inertial energy dissipation in shallow-water breaking waves. Journal of Fluid Mechanics890, A12. 
https://doi.org/10.1017/jfm.2020.83  

Najafzadeh, F., Kudryavtseva, N. and Soomere, T. 2021. Effects of large-scale atmospheric circulation on the Baltic Sea wave climate: application of EOF method on multi-mission satellite altimetry data. Climate Dynamics, 57(11–12), 3465–3478. 
https://doi.org/10.1007/s00382-021-05874-x

Najafzadeh, F., Kudryavtseva, N., Soomere, T. and Giudici, A. 2022. Effect of ice cover on wave statistics and wave-driven processes in the northern Baltic Sea. Boreal Environment Research27, 97–116.

Najafzadeh, F., Jankowski, M. Z., Giudici, A., Männikus, R., Suursaar, Ü., Soomere, T. and Viška, M. 2024. Spatiotemporal variability of wave climate in the Gulf of Riga. Oceanologia, early access. 
https://doi.org/10.1016/j.oceano.2023.11.001  

Omstedt, A. and Chen, D. 2001. Influence of atmospheric circulation on the maximum ice extent in the Baltic Sea. Journal of Geophysical Research: Oceans106(C3), 4493–4500. 
https://doi.org/10.1029/1999JC000173  

Orviku, K., Jaagus, J., Kont, A., Ratas, U. and Rivis, R. 2003. Increasing activity of coastal processes associated with climate change in Estonia. Journal of Coastal Research19(2), 364–375.

Palosuo, E. 1953. A Treatise on Severe Ice Conditions in the Central Baltic. Merentutkimuslaitoksen Julkaisu/Havsforskningsinstitutets Skrift, 156. Finnish Institute of Marine Research, Helsinki.

Pindsoo, K. and Soomere, T. 2020. Basin-wide variations in trends in water level maxima in the Baltic Sea. Continental Shelf Research193, 104029. 
https://doi.org/10.1016/j.csr.2019.104029  

Pryor, S. C. and Barthelmie, R. J. 2003. Long‐term trends in near‐surface flow over the Baltic. International Journal of Climatology23(3), 271–289. 
https://doi.org/10.1002/joc.878  

Räämet, A. and Soomere, T. 2010. The wave climate and its seasonal variability in the northeastern Baltic Sea. Estonian Journal of Earth Sciences59(1), 100–113. 
https://doi.org/10.3176/earth.2010.1.08  

Ruest, B., Neumeier, U., Dumont, D., Bismuth, E., Senneville, S. and Caveen, J. 2016. Recent wave climate and expected future changes in the seasonally ice-infested waters of the Gulf of St. Lawrence, Canada. Climate Dynamics46(1–2), 449–466. 
https://doi.org/10.1007/s00382-015-2592-3  

Ruosteenoja, K., Vihma, T. and Venäläinen, A. 2019. Projected changes in European and North Atlantic seasonal wind climate derived from CMIP5 simulations. Journal of Climate32(19), 6467–6490. 
https://doi.org/10.1175/JCLI-D-19-0023.1  

Rutgersson, A., Kjellström, E., Haapala, J., Stendel, M., Danilovich, I., Drews, M. et al. 2022. Natural hazards and extreme events in the Baltic Sea region. Earth System Dynamics13(1), 251–301. 
https://doi.org/10.5194/esd-13-251-2022

Ryabchuk, D., Kolesov, A., Chubarenko, B., Spiridonov, M., Kurennoy, D. and Soomere, T. 2011. Coastal erosion processes in the eastern Gulf of Finland and their links with geological and hydrometeorological factors. Boreal Environment Research16(Suppl. A), 117–137.

Slater, T., Lawrence, I. R., Otosaka, I. N., Shepherd, A., Gourmelen, N., Jakob, L. et al. 2021. Review article: Earth’s ice imbalance. The Cryoshpere15(1), 233–246. 
https://doi.org/10.5194/tc-15-233-2021

SMHI (Swedish Meteorological and Hydrological Institute) and FIMR (Finnish Meteorological Institute). 1982. An Ice Atlas for the Baltic Sea, Kattegat, Skagerrak and Lake Vänern. Sjöfartsverket, Norrköping.

Soomere, T. 2003. Anisotropy of wind and wave regimes in the Baltic Proper. Journal of Sea Research49(4), 305–316. 
https://doi.org/10.1016/S1385-1101(03)00034-0

Soomere, T. 2023. Numerical simulations of wave climate in the Baltic Sea: a review. Oceanologia65(1), 117–140. 
https://doi.org/10.1016/j.oceano.2022.01.004

Soomere, T. and Eelsalu, M. 2014. On the wave energy potential along the eastern Baltic Sea coast. Renewable Energy71, 221–233. 
https://doi.org/10.1016/j.renene.2014.05.025

Squire, V. A. 2020. Ocean wave interactions with sea ice: a re­appraisal. Annual Review of Fluid Mechanics52, 37–60. 
https://doi.org/10.1146/annurev-fluid-010719-060301

Storch, H. von, Omstedt, A., Pawlak, J. and Reckermann, M. 2015. Introduction and Summary. In The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Springer, Cham, 1–22. 
https://doi.org/10.1007/978-3-319-16006-1_1  

Tavakoli, S. and Babanin, A. V. 2021. Wave energy attenuation by drifting and non-drifting floating rigid plates. Ocean Engineer­ing226, 108717. 
https://doi.org/10.1016/j.oceaneng.2021.108717

Thomson, J. 2022. Wave propagation in the marginal ice zone: connections and feedback mechanisms within the air–ice–ocean system. Philosophical Transactions of the Royal Society A380(2235), 20210251. 
https://doi.org/10.1098/rsta.2021.0251

Tinz, B. 1996. On the relation between annual maximum extent of ice cover in the Baltic Sea and sea level pressure as well as air temperature field. Geophysica32(3), 319–341.

Torralba, V., Doblas-Reyes, F. J. and Gonzalez-Reviriego, N. 2017. Uncertainty in recent near-surface wind speed trends: a global reanalysis intercomparison. Environment Research Letters12(11), 114019. 
https://doi.org/10.1088/1748-9326/aa8a58

Tuomi, L., Kahma, K. K. and Pettersson, H. 2011. Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environment Research16(6), 451–472.

Tuomi, L., Kanarik, H., Björkqvist, J.-V., Marjamaa, R., Vainio, J., Hordoir, R. et al. 2019. Impact of ice data quality and treatment on wave hindcast statistics in seasonally ice-covered seas. Frontiers in Earth Science7, 166. 
https://doi.org/10.3389/feart.2019.00166

Urrego-Blanco, J. and Sheng, J. 2014. Formation and distribution of sea ice in the Gulf of St. Lawrence: a process-oriented study using a coupled ocean-ice model. Journal of Geophysical Research: Oceans119(10), 7099–7122. 
https://doi.org/10.1002/2014JC010185

Vihma, T. and Haapala, J. 2009. Geophysics of sea ice in the Baltic Sea: a review. Progress in Oceanography80(3–4), 129–148. 
https://doi.org/10.1016/j.pocean.2009.02.002

Wadhams, P. 1986. The seasonal ice zone. In The Geophysics of Sea Ice (Untersteiner, N., ed.). NATO Advanced Science Institutes  Series. Springer, Boston, MA.
https://doi.org/10.1007/978-1-4899-5352-0_15  

Wadhams, P., Squire, V. A., Ewing, J. A. and Pascal, R. W. 1986. The effect of the marginal ice zone on the directional wave spectrum of the ocean. Journal of Physical Oceanography16(2), 358–376. 
https://doi.org/10.1175/1520-0485(1986)016<0358:TEOTMI>2.0.CO;2  

Wang, J., Bai, X., Hu, H., Clites, A., Colton, M. and Lofgren, B. 2012. Temporal and spatial variability of Great Lakes ice cover, 1973–2010. Journal of Climate25(4), 1318–1329. 
https://doi.org/10.1175/2011JCLI4066.1  

Wang, L., Perrie, W., Long, Z., Blokhina, M., Zhang, G., Toulany, B. and Zhang, M. 2018. The impact of climate change on the wave climate in the Gulf of St. Lawrence. Ocean Modelling128, 87–101. 
https://doi.org/10.1016/j.ocemod.2018.06.003  

Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt, A. et al. 2021. Sea level dynamics and coastal erosion in the Baltic Sea region. Earth Systems Dynamics12(3), 871–898. 
https://doi.org/10.5194/esd-12-871-2021

Winsor, P., Rodhe, J. and Omstedt, A. 2001. Baltic Sea ocean climate: an analysis of 100 yr of hydrographic data with focus on the freshwater budget. Climate Research18(1–2), 5–15. 
https://doi.org/10.3354/cr018005

Zhang, N., Li, S., Wu, Y., Wang, K.-H., Zhang, Q., You, Z. J. and Wang, J. 2020. Effects of sea ice on wave energy flux distribution in the Bohai Sea. Renewable Energy162, 2330–2343. 
https://doi.org/10.1016/j.renene.2020.10.036

Zhang, L., Ren, G., Xu, M., Meng, F., Liao, R., Liu, D. et al. 2023. Spatiotemporal patterns of sea ice cover in the marginal seas of East Asia. Atmosphere14(2), 207. 
https://doi.org/10.3390/atmos14020207

Back to Issue