This article presents the investigation of the wind-driven component of underwater ambient sound in the shallow brackish waters of the Baltic Sea. Natural sound levels are strongly correlated with the wind speed at high frequencies (≥5 kHz). At frequencies above 5 kHz, a characteristic spectral level decrease of 5 dB/octave was observed. Analysis of the data revealed that, for the same wind speed, the spectral levels are higher when the wind is blowing from a direction where the closest obstructing shore is farther away, i.e. the wind fetch is longer, which results in higher waves. This was especially noticeable in ambient sound recorded in a channel-like basin, where for the 8.5 m/s steady wind speed, the 5 kHz mean spectral level is 4 dB higher at the longer 152 km wind fetch versus the shorter 2.1 km wind fetch.
Betke, K., Folegot, T., Matuschek, R., Pajala, J., Persson, L., Tegowski, J. et al. 2015. BIAS Standards for Signal Processing. Aims, Processes and Recommendations.
Carey, W. M. and Browning, D. 1988. Low frequency ocean ambient noise: measurements and theory. In Sea Surface Sound: Natural Mechanisms of Surface Generated Noise in the Ocean (Kerman, B. R., ed.). Springer, Dordrecht, 361–376.
https://doi.org/10.1007/978-94-009-3017-9_26
CERC (United States Coastal Engineering Research Center). 1984. Shore Protection Manual, Vol. 1. US Army Coastal Engineering Research Center.
de Jong, C. A. F., Binnerts, B., Robinson, S. and Wang, L. 2021. Guidelines for Modelling Ocean Ambient Noise. Report of the EU INTERREG Joint Monitoring Programme for Ambient Noise North Sea (Jomopans).
Franz, G. J. 1959. Splashes as sources of sound in liquids. The Journal of the Acoustical Society of America, 31, 1080–1096.
https://doi.org/10.1121/1.1907831
Guelton, S., Clorennec, D., Pardo, E., Brunet, P. and Folegot, T. 2013. Quonops©, la prévision opérationnelle en acoustique sous-marine sur grille de calcul (Quonops©, operational forecasting in underwater acoustics using grid computing). Journées SUCCES 2013.
Hildebrand, J. A., Frasier, K. E., Baumann-Pickering, S. and Wiggins, S. M. 2021. An empirical model for wind-generated ocean noise. The Journal of the Acoustical Society of America, 149(6), 4516–4533.
https://doi.org/10.1121/10.0005430
Holthuijsen, L. H. 2010. Waves in Oceanic and Coastal Waters. Cambridge University Press.
Ingenito, F. and Wolf, S. N. 1989. Site dependence of wind‐ dominated ambient noise in shallow water. The Journal of the Acoustical Society of America, 85, 141–145.
https://doi.org/10.1121/1.397722
ISO 18405:2017. Underwater acoustics – Terminology.
Katsnelson, B., Petnikov, V. and Lynch, J. 2012. Fundamentals of Shallow Water Acoustics. Springer, New York, NY.
https://doi.org/10.1007/978-1-4419-9777-7
Kennedy, R. M. 1992. Sea surface dipole sound source dependence on wave‐breaking variables. The Journal of the Acoustical Society of America, 91, 1974–1982.
https://doi.org/10.1121/1.403681
Klusek, Z. and Lisimenka, A. 2016. Seasonal and diel variability of the underwater noise in the Baltic Sea. The Journal of the Acoustical Society of America, 139(4), 1537–1547.
https://doi.org/10.1121/1.4944875
Knudsen, V. O., Alford, R. S. and Emling, J. W. 1948. Underwater ambient noise. Journal of Marine Research, 7(3), 410–429.
Larsson Nordström, R., Lalander, E., Skog, I. and Andersson, M. 2022. Maximum likelihood separation of anthropogenic and wind-generated underwater noise. The Journal of the Acoustical Society of America, 152(3), 1292–1299.
https://doi.org/10.1121/10.0013887
Lemon, D. D., Farmer, D. M. and Watts, D. R. 1984. Acoustic measurements of wind speed and precipitation over a continental shelf. Journal of Geophysical Research, 89(C3), 3462–3472.
https://doi.org/10.1029/JC089iC03p03462
Liblik, T., Skudra, M. and Lips, U. 2017. On the buoyant sub-surface salinity maxima in the Gulf of Riga. Oceanologia, 59(2), 113–128.
https://doi.org/10.1016/j.oceano.2016.10.001
Merchant, N. D., Witt, M. J., Blondel, P., Godley, B. J. and Smith, G. H. 2012. Assessing sound exposure from shipping in coastal waters using a single hydrophone and Automatic Identification System (AIS) data. Marine Pollution Bulletin, 64(7), 1320–1329.
https://doi.org/10.1016/j.marpolbul.2012.05.004
Merchant, N. D., Fristrup, K. M., Johnson, M. P., Tyack, P. L., Witt, M. J., Blondel, P. and Parks, S. E. 2015. Measuring acoustic habitats. Methods in Ecology and Evolution, 6(3), 257–265.
https://doi.org/10.1111/2041-210X.12330
Mustonen, M. 2020. Natural and anthropogenic underwater ambient sound in the Baltic Sea. PhD thesis. Tallinn University of Technology (TalTech), Tallinn, Estonia.
Mustonen, M., Klauson, A., Andersson, M., Clorennec, D., Folegot, T., Koza, R. et al. 2019. Spatial and temporal variability of ambient underwater sound in the Baltic Sea. Scientific Reports, 9(1), 13237.
https://doi.org/10.1038/s41598-019-48891-x
Piggott, C. L. 1964. Ambient sea noise at low frequencies in shallow water of the Scotian Shelf. The Journal of the Acoustical Society of America, 36(11), 2152–2163.
https://doi.org/10.1121/1.1919337
Pihl, J. N. 2020. Archipelago ambient noise and its dependence on weather. Proceedings of Meetings on Acoustics, 40(1), 070006.
https://doi.org/10.1121/2.0001305
Poikonen, A. A. 2010. High-frequency wind-driven ambient noise in shallow brackish water: Measurements and spectra. The Journal of the Acoustical Society of America, 128(5), EL242– EL247.
https://doi.org/10.1121/1.3488589
Poikonen, A. and Madekivi, S. 2010. Wind-generated ambient noise in a shallow brackish water environment in the archipelago of the Gulf of Finland. The Journal of the Acoustical Society of America, 127(6), 3385–3393.
https://doi.org/10.1121/1.3397364
Prawirasasra, M. S., Mustonen, M. and Klauson, A. 2021. The underwater soundscape at Gulf of Riga marine-protected areas. Journal of Marine Science and Engineering, 9(8), 915.
https://doi.org/10.3390/jmse9080915
Prosperetti, A. 1988. Bubble‐related ambient noise in the ocean. The Journal of the Acoustical Society of America, 84(3), 1042–1054.
https://doi.org/10.1121/1.396740
Raudsepp, U. 2001. Interannual and seasonal temperature and salinity variations in the Gulf of Riga and corresponding saline water inflow from the Baltic Proper. Hydrology Research, 32(2), 135–160.
https://doi.org/10.2166/nh.2001.0009
Robinson, S. P., Lepper, P. A. and Hazelwood, R. A. 2014. Good Practice Guide for Underwater Noise Measurement. Teddington, England, National Measurement Office, Marine Scotland, The Crown Estate, 95pp. (NPL Good Practice Guide No. 133).
http://dx.doi.org/10.25607/OBP-21
Sigray, P., Andersson, M., Pajala, J., Laanearu, J., Klauson, A., Tegowski. J. et al. 2016. BIAS: a regional management of underwater sound in the Baltic Sea. In The Effects of Noise on Aquatic Life II. (Popper, A. N. and Hawkins, A., eds) Springer, New York, NY, 1015–1023.
http://dx.doi.org/10.1007/978-1-4939-2981-8
Skudra, M. and Lips U. 2017. Characteristics and inter-annual changes in temperature, salinity and density distribution in the Gulf of Riga. Oceanologia, 59(1), 37–48.
https://doi.org/10.1016/j.oceano.2016.07.001
Thorpe, S. A. and Humphries, P. N. 1980. Bubbles and breaking waves. Nature, 283, 463–465.
https://doi.org/10.1038/283463a0
Wenz, G. M. 1962. Acoustic ambient noise in the ocean: spectra and sources. The Journal of the Acoustical Society of America, 34(12), 1936–1956.
https://doi.org/10.1121/1.1909155
Wildlife Acoustics, Inc. 2013. User manual supplement SM2m+.
https://www.wildlifeacoustics.com/uploads/user-guides/SM2M-User-Manual.pdf (accessed 2019-08-01).