ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Research article
Wind fetch effect on underwater wind-driven sound; pp. 15–25
PDF | https://doi.org/10.3176/earth.2024.02

Authors
Muhammad Saladin Prawirasasra, Mirko Mustonen, Aleksander Klauson
Abstract

This article presents the investigation of the wind-driven component of underwater ambient sound in the shallow brackish waters of the Baltic Sea. Natural sound levels are strongly correlated with the wind speed at high frequencies (≥5 kHz). At frequencies above 5 kHz, a characteristic spectral level decrease of 5 dB/octave was observed. Analysis of the data revealed that, for the same wind speed, the spectral levels are higher when the wind is blowing from a direction where the closest obstructing shore is farther away, i.e. the wind fetch is longer, which results in higher waves. This was especially noticeable in ambient sound recorded in a channel-like basin, where for the 8.5 m/s steady wind speed, the 5 kHz mean spectral level is 4 dB higher at the longer 152 km wind fetch versus the shorter 2.1 km wind fetch.

References

Betke, K., Folegot, T., Matuschek, R., Pajala, J., Persson, L., Tegowski, J. et al. 2015. BIAS Standards for Signal Processing. Aims, Processes and Recommendations.

Carey, W. M. and Browning, D. 1988. Low frequency ocean ambient noise: measurements and theory. In Sea Surface Sound: Natural Mechanisms of Surface Generated Noise in the Ocean (Kerman, B. R., ed.). Springer, Dordrecht, 361–376. 
https://doi.org/10.1007/978-94-009-3017-9_26

CERC (United States Coastal Engineering Research Center). 1984. Shore Protection Manual, Vol. 1. US Army Coastal Engineering Research Center.

de Jong, C. A. F., Binnerts, B., Robinson, S. and Wang, L. 2021. Guidelines for Modelling Ocean Ambient Noise. Report of the EU INTERREG Joint Monitoring Programme for Ambient Noise North Sea (Jomopans).

Franz, G. J. 1959. Splashes as sources of sound in liquids. The Journal of the Acoustical Society of America, 31, 1080–1096. 
https://doi.org/10.1121/1.1907831  

Guelton, S., Clorennec, D., Pardo, E., Brunet, P. and Folegot, T. 2013. Quonops©, la prévision opérationnelle en acoustique sous-marine sur grille de calcul (Quonops©, operational forecasting in underwater acoustics using grid computing). Journées SUCCES 2013

Hildebrand, J. A., Frasier, K. E., Baumann-Pickering, S. and Wiggins, S. M. 2021. An empirical model for wind-generated ocean noise. The Journal of the Acoustical Society of America, 149(6), 4516–4533. 
https://doi.org/10.1121/10.0005430

Holthuijsen, L. H. 2010. Waves in Oceanic and Coastal Waters. Cambridge University Press. 

Ingenito, F. and Wolf, S. N. 1989. Site dependence of wind‐ dominated ambient noise in shallow water. The Journal of the Acoustical Society of America85, 141–145. 
https://doi.org/10.1121/1.397722

ISO 18405:2017. Underwater acoustics – Terminology.

Katsnelson, B., Petnikov, V. and Lynch, J. 2012. Fundamentals of Shallow Water Acoustics. Springer, New York, NY. 
https://doi.org/10.1007/978-1-4419-9777-7  

Kennedy, R. M. 1992. Sea surface dipole sound source depend­ence on wave‐breaking variables. The Journal of the Acoustical Society of America91, 1974–1982. 
https://doi.org/10.1121/1.403681  

Klusek, Z. and Lisimenka, A. 2016. Seasonal and diel variability of the underwater noise in the Baltic Sea. The Journal of the Acoustical Society of America139(4), 1537–1547. 
https://doi.org/10.1121/1.4944875

Knudsen, V. O., Alford, R. S. and Emling, J. W. 1948. Underwater ambient noise. Journal of Marine Research7(3), 410–429.

Larsson Nordström, R., Lalander, E., Skog, I. and Andersson, M. 2022. Maximum likelihood separation of anthropogenic and wind-generated underwater noise. The Journal of the Acoustical Society of America152(3), 1292–1299. 
https://doi.org/10.1121/10.0013887  

Lemon, D. D., Farmer, D. M. and Watts, D. R. 1984. Acoustic measurements of wind speed and precipitation over a continental shelf. Journal of Geophysical Research89(C3), 3462–3472. 
https://doi.org/10.1029/JC089iC03p03462

Liblik, T., Skudra, M. and Lips, U. 2017. On the buoyant sub-surface salinity maxima in the Gulf of Riga. Oceanologia59(2), 113–128. 
https://doi.org/10.1016/j.oceano.2016.10.001

Merchant, N. D., Witt, M. J., Blondel, P., Godley, B. J. and Smith, G. H. 2012. Assessing sound exposure from shipping in coastal waters using a single hydrophone and Automatic Identification System (AIS) data. Marine Pollution Bulletin64(7), 1320–1329. 
https://doi.org/10.1016/j.marpolbul.2012.05.004

Merchant, N. D., Fristrup, K. M., Johnson, M. P., Tyack, P. L., Witt, M. J., Blondel, P. and Parks, S. E. 2015. Measuring acoustic habitats. Methods in Ecology and Evolution6(3), 257–265. 
https://doi.org/10.1111/2041-210X.12330

Mustonen, M. 2020. Natural and anthropogenic underwater ambient sound in the Baltic Sea. PhD thesis. Tallinn University of Technology (TalTech), Tallinn, Estonia.

Mustonen, M., Klauson, A., Andersson, M., Clorennec, D., Folegot, T., Koza, R. et al. 2019. Spatial and temporal variability of ambient underwater sound in the Baltic Sea. Scientific Reports9(1), 13237. 
https://doi.org/10.1038/s41598-019-48891-x

Piggott, C. L. 1964. Ambient sea noise at low frequencies in shallow water of the Scotian Shelf. The Journal of the Acoustical Society of America36(11), 2152–2163. 
https://doi.org/10.1121/1.1919337  

Pihl, J. N. 2020. Archipelago ambient noise and its dependence on weather. Proceedings of Meetings on Acoustics, 40(1), 070006. 
https://doi.org/10.1121/2.0001305

Poikonen, A. A. 2010. High-frequency wind-driven ambient noise in shallow brackish water: Measurements and spectra. The Journal of the Acoustical Society of America128(5), EL242– EL247. 
https://doi.org/10.1121/1.3488589  

Poikonen, A. and Madekivi, S. 2010. Wind-generated ambient noise in a shallow brackish water environment in the archipelago of the Gulf of Finland. The Journal of the Acoustical Society of America127(6), 3385–3393. 
https://doi.org/10.1121/1.3397364

Prawirasasra, M. S., Mustonen, M. and Klauson, A. 2021. The underwater soundscape at Gulf of Riga marine-protected areas. Journal of Marine Science and Engineering9(8), 915. 
https://doi.org/10.3390/jmse9080915

Prosperetti, A. 1988. Bubble‐related ambient noise in the ocean. The Journal of the Acoustical Society of America84(3), 1042–1054. 
https://doi.org/10.1121/1.396740  

Raudsepp, U. 2001. Interannual and seasonal temperature and salinity variations in the Gulf of Riga and corresponding saline water inflow from the Baltic Proper. Hydrology Research, 32(2), 135–160. 
https://doi.org/10.2166/nh.2001.0009

Robinson, S. P., Lepper, P. A. and Hazelwood, R. A. 2014. Good Practice Guide for Underwater Noise Measurement. Teddington, England, National Measurement Office, Marine Scotland, The Crown Estate, 95pp. (NPL Good Practice Guide No. 133). 
http://dx.doi.org/10.25607/OBP-21

Sigray, P., Andersson, M., Pajala, J., Laanearu, J., Klauson, A., Tegowski. J. et al. 2016. BIAS: a regional management of underwater sound in the Baltic Sea. In The Effects of Noise on Aquatic Life II. (Popper, A. N. and Hawkins, A., eds) Springer, New York, NY, 1015–1023. 
http://dx.doi.org/10.1007/978-1-4939-2981-8

Skudra, M. and Lips U. 2017. Characteristics and inter-annual changes in temperature, salinity and density distribution in the Gulf of Riga. Oceanologia59(1), 37–48. 
https://doi.org/10.1016/j.oceano.2016.07.001  

Thorpe, S. A. and Humphries, P. N. 1980. Bubbles and breaking waves. Nature283, 463–465. 
https://doi.org/10.1038/283463a0  

Wenz, G. M. 1962. Acoustic ambient noise in the ocean: spectra and sources. The Journal of the Acoustical Society of America34(12), 1936–1956. 
https://doi.org/10.1121/1.1909155

Wildlife Acoustics, Inc. 2013. User manual supplement SM2m+.
https://www.wildlifeacoustics.com/uploads/user-guides/SM2M-User-Manual.pdf (accessed 2019-08-01).

Back to Issue