The aim of this study is to characterize the current spatial distribution of three main phyla of phytoplankton (Cyanobacteria, Charophyta and Chlorophyta) from 77 Latvian lakes and ponds, analysed from modern surface sediment samples through a non-pollen palynomorph approach. The Pearson cross-correlation and the principal component analysis were applied to test the potential correlation of phytoplankton with climate (mean winter and summer temperature), water (pH), environmental (land use – forest, agriculture and urban) and sediment (organic and carbonate matter) variables. The results show the dominance of Chlorophyta in Latvian lakes and ponds. Cyanobacteria were dominant in sites closer to human-populated and recreation centres, including urban and agricultural land-use areas. In more turbid and polluted environments, Chlorophyta thrive today. Charophyta dominated in forested areas. Although Chlorophyta dominate in present-day waterbodies, the rather high relative proportion of Cyanobacteria draws attention to a potential threat. As the cross-correlation results indicate a negative correlation between Cyanobacteria and mean winter temperatures, in warmer climates Cyanobacteria can overtake other phytoplankton. The results of this study can be further used in lake and pond management.
Apsīte, E. and Kļaviņš, M. 2023. Iekšējie virszemes ūdeņi Latvijā (Inland surface waters in Latvia). Nacionālā enciklopēdija (National Encyclopaedia).
https://enciklopedija.lv/skirklis/26188-iekšējie-virszemes-ūdeņi-Latvijā
Bellinger, E. G. and Sigee, D. C. 2010. Freshwater Algae, Identification and Use as Bioindicators. Antony Rowe, Chippenham.
https://doi.org/10.1002/9780470689554
Guiry, M. D. and Guiry, G. M. 2021. AlgaeBase. World-wide electronic publication. National University of Ireland, Galway.
https://www.algaebase.org (accessed 2021-11-22).
Davis, J. C. 1986. Statistics and Data Analysis in Geology. John Wiley & Sons, Hoboken, NJ.
De Senerpont Domis, L. N., Elser, J. J., Gsell, A. S., Huszar, V. L. M., Ibelings, B. W., Jeppesen, E. et al. 2013. Plankton dynamics under different climatic conditions in space and time. Freshwater Biology, 58, 463–482.
https://doi.org/10.1111/fwb.12053
Dean, W. E. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology, 44, 242–248.
https://doi.org/10.1306/74D729D2-2B21-11D7-8648000102C1865D
EC (European Community). 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, L327, 1–17.
EEA (European Environmental Agency). 2020. Corine Land Cover 2018 Data. Copernicus Land Monitoring Service.
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed 2022-06-04).
Feuchtmayr, H., Pottinger, T. G., Moore, A., De Ville, M. M., Caillouet, L., Carter, H. T. et al. 2019. Effects of brownification and warming on algal blooms, metabolism and higher trophic levels in productive shallow lake mesocosms. Science of The Total Environment, 678, 227–238.
https://doi.org/10.1016/j.scitotenv.2019.04.105
Hammer, Ø., Harper, D. A. T. and Ryan, P. D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4.
Hou, X., Feng, L., Dai, Y., Hu, C., Gibson, L., Tang, J. et al. 2022. Global mapping reveals increase in lacustrine algal blooms over the past decade. Nature Geoscience, 15, 130–134.
https://doi.org/10.1038/s41561-021-00887-x
Jackson, D. A. 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology, 74, 2204–2214.
https://doi.org/10.2307/1939574
Legendre, P. and Legendre, L. 1998. Numerical Ecology. 2nd ed. Elsevier, Amsterdam.
Miola, A. 2012. Tools for Non-Pollen Palynomorphs (NPPs) analysis: a list of Quaternary NPP types and reference literature in English language (1972–2011). Review of Palaeobotany and Palynology, 186, 142–161.
https://doi.org/10.1016/j.revpalbo.2012.06.010
O’Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, R. J. et al. 2015. Rapid and highly variable warming of lake surface water around the globe. Geophysical Research Letters, 42, 10773–10781.
https://doi.org/10.1002/2015GL066235
Osburn, F. S., Wagner, N. D., Taylor, R. B., Chambliss, C. K., Brooks, B. W. and Scott, J. T. 2022. The effects of salinity and N : P on N-rich toxins by both an N-fixing and non-N-fixing cyanobacteria. Limnology and Oceanography Letters, 8, 162–172.
https://doi.org/10.1002/lol2.10234
Österholm, J., Popin, R. V., Fewer, D. P. and Sivonen, K. 2020. Phylogenomic analysis of secondary metabolism in the toxic Cyanobacterial genera Anabaena, Dolichospermum and Aphanizomenon. Toxins, 12, 248.
https://doi.org/10.3390/toxins12040248
Smol, J. P. 2008. Pollution of Lakes and Rivers: a Paleoenvironmental Perspective. 2nd ed. Blackwell Publishing, Oxford.
Stivrins, N., Briede, A., Steinberga, D., Jasiunas, N., Jeskins, J., Kalnina, L. et al. 2021. Natural and human-transformed vegetation and landscape reflected by modern pollen data in the boreonemoral zone of northeastern Europe. Forests, 12, 1166.
https://doi.org/10.3390/f12091166
Stivrins, N., Trasune, L., Jasiunas, N., Kalnina, L., Briede, A., Maksims, A. et al. 2022. Indicative value and training set of freshwater organic-walled algal palynomorphs (non-pollen palynomorphs). Quaternary Science Reviews, 282, 107450.
https://doi.org/10.1016/j.quascirev.2022.107450
Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores, 13, 615–621.
Woolway, R. I., Sharma, S. and Smol, J. P. 2022. Lakes in hot water: the impacts of a changing climate on aquatic ecosystems. BioScience, 72, 1050–1061.
https://doi.org/10.1093/biosci/biac052