The Igoudine and Amouslek formations (Terreneuvian–Cambrian Epoch 2 boundary) in the western Anti-Atlas of Morocco record the replacement of stromatolite-dominated microbial consortia by thrombolite-metazoan consortia. Carbonate and calcareous shales of both formations have been analyzed for major, trace, and rare earth elements to study their geochemical characteristics and evaluate the provenance of the terrigenous fraction and paleoredox conditions. Discrimination diagrams for the source rocks based on major elements and selected trace elements indicate that the terrigenous fractions of the sediments were likely derived from predominantly felsic rocks, and the source rocks have been identified to be the Paleoproterozoic–Neoproterozoic granites and metasediments of the Kerdous inlier. Paleoredox proxies such as U/Al, V/Al and Mo/Al suggest that the Igoudine and Amouslek formations were deposited in the oxic environment. Our data show that the local water column was prevailingly oxidized before, during and after the transition from the microbial consortium (stromatolite-dominated biota) to the thrombolite-archaeocyathan consortium and shelly metazoans within the studied interval. This implies that the seawater redox status was not driving this change in these biological communities.
Alcott, L. J., Mills, B. J. W. and Poulton, S. W. 2019. Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science, 366, 1333–1337.
https://doi.org/10.1126/science.aax6459
Algeo, T. J. and Li, C. 2020. Redox classification and calibration of redox thresholds in sedimentary systems. Geochimica et Cosmochimica Acta, 287, 8–26.
https://doi.org/10.1016/j.gca.2020.01.055
Algeo, T. J. and Liu, J. S. 2020. A re-assessment of elemental proxies for paleoredox analysis. Chemical Geology, 540, 119549.
https://doi.org/10.1016/j.chemgeo.2020.119549
Álvaro, J. J. and Clausen, S. 2006. Microbial crusts as indicators of stratigraphic diastems in the Cambrian Brèche à Micmacca, Atlas Mountains of Morocco. Sedimentary Geology, 185, 255–265.
https://doi.org/10.1016/j.sedgeo.2005.12.025
Álvaro, J. J. and Debrenne, F. 2010. The Great Atlasian Reef Complex: an early Cambrian subtropical fringing belt that bordered West Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology, 294, 120–132.
https://doi.org/10.1016/j.palaeo.2009.11.022
Álvaro, J. J., Rouchy, J. M., Bechstädt, T., Boucot, A., Boyer, F., Debrenne, F. et al. 2000. Evaporitic constraints on the southward drifting of the western Gondwana margin during Early Cambrian times. Palaeogeography, Palaeoclimatology, Palaeoecology, 160, 105–122.
https://doi.org/10.1016/S0031-0182(00)00061-4
Álvaro, J. J., Elicki, O., Geyer, G., Rushton, A. W. A. and Shergold, J. H. 2003. Palaeogeographical controls on the Cambrian trilobite immigration and evolutionary patterns reported in the western Gondwana margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 195, 5–35.
https://doi.org/10.1016/S0031-0182(03)00300-6
Álvaro, J. J., Benziane, F., Thomas, R., Walsh, G. J. and Yazidi, A. 2014. Neoproterozoic–Cambrian stratigraphic framework of the Anti-Atlas and Ouzellagh promontory (High Atlas), Morocco. Journal of African Earth Sciences, 98, 19–33.
https://doi.org/10.1016/j.jafrearsci.2014.04.026
Amthor, J., Grotzinger, J., Schröder, S., Bowring, S., Ramezani, J., Martin, M. et al. 2003. Extinction of Cloudina and Namacalathus at the Precambrian–Cambrian boundary in Oman. Geology, 31, 431–434.
https://doi.org/10.1130/0091-7613(2003)031<0431:EOCANA>2.0.CO;2
Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P. and Ramasamy, S. 2004. Geochemistry of sandstones from the upper Miocene Kudankulam Formation, Southern India: Implications for provenance, weathering and tectonic setting. Journal of Sedimentary Research, 74, 285–297.
https://doi.org/10.1306/082803740285
Azizi, A., El Albani, A., El Bakhouche, A., Vinn O., Bankole, O. M., Fontaine, C. et al. 2022. Early Biomineralization and Exceptional Preservation of the First Thrombolite Reefs with Archaeocyaths in the Lower Cambrian of the Western Anti-Atlas, Morocco. Cambridge University Press.
https://doi.org/10.1017/S0016756822001017
Barbey, P., Nachit, H. and Pons, J. 2001. Magma–host interactions during differentiation and emplacement of a shallow-level, zoned granitic pluton (Tarçouate pluton, Morocco): implications for magma emplacement. Lithos, 58, 125–143.
https://doi.org/10.1016/S0024-4937(01)00053-6
Barnes, C. E. and Cochran, J. K. 1990. Uranium removal in oceanic sediments and the oceanic U balance. Earth and Planetary Science Letters, 97, 94–101.
https://doi.org/10.1016/0012-821X(90)90101-3
Bau, M. and Dulski, P. 1994. Evolution of the yttrium-holmium systematics of seawater through time. Mineralogical Magazine, 58A, 61–62.
https://doi.org/10.1180/minmag.1994.58A.1.35
Bau, M. and Dulski, P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 37–55.
https://doi.org/10.1016/0301-9268(95)00087-9
Bennett, W. W. and Canfield, D. E. 2020. Redox-sensitive trace metals as paleoredox proxies: A review and analysis of data from modern sediments. Earth-Science Reviews, 204, 103175.
https://doi.org/10.1016/j.earscirev.2020.103175
Benssaou, M. and Hamoumi, N. 2001. L’Anti-Atlas occidental du Maroc: étude sédimentologique et reconstitutions paléogéographiques au Cambrien inférieur (The western Anti-Atlas of Morocco: sedimentological study and paleogeographic reconstructions in the Lower Cambrian). Journal of African Earth Sciences, 32, 351–372.
https://doi.org/10.1016/S0899-5362(01)90102-2
Benssaou, M. and Hamoumi, N. 2004. Les microbialites de l’Anti-Atlas occidental (Maroc): marqueurs stratigraphiques et témoins des changements environnementaux au Cambrien inférieur (Stratigraphic and environmental significance of the Lower-Cambrian western Anti-Atlasic microbialites (Morocco)). Comptes Rendus Geosciences, 336, 109–116.
https://doi.org/10.1016/j.crte.2003.10.024
Brasier, M. D. 1982. Sea-level changes, facies changes and the late Precambrian–early Cambrian evolutionary explosion. Precambrian Research,17, 105–123.
https://doi.org/10.1016/0301-9268(82)90050-X
Breck, W. G. 1974. Redox levels in the sea. In The Sea: Ideas and Observations on Progress in the Study of the Seas, Marine Chemistry (Goldberg, E. D., ed.). Wiley, New York, 5, 153–179.
Buggisch, W. and Flügel, E. 1988. The Precambrian/Cambrian boundary in the Anti-Atlas (Morocco) discussions and new results. In The Atlas System of Morocco. Studies on its Geodynamic Evolution (Jacobshagen, V. H., ed.). Lecture Notes in Earth Sciences, 15, 81–90.
https://doi.org/10.1007/BFb0011587
Buggisch, W. and Heinitz, W. 1984. Slumpfolds and other early deformations in the early Cambrian of the Western and Central Anti-Atlas (Morocco). Geologische Rundschau, 73, 809–818.
https://doi.org/10.1007/BF01824983
Butterfield, N. J. 2015. Early evolution of the Eukaryota. Palaeontology, 58, 5–17.
https://doi.org/10.1111/pala.12139
Caetano-Filho, S., Paula-Santos, G. M. and Dias-Brito, D. 2018. Carbonate REE + Y signatures from the restricted early marine phase of South Atlantic Ocean (late Aptian–Albian): The influence of early anoxic diagenesis on shale-normalized REE + Y patterns of ancient carbonate rocks. Palaeogeography, Palaeoclimatology, Palaeoecology, 500, 69–83.
https://doi.org/10.1016/j.palaeo.2018.03.028
Choubert, G. 1952. Histoire géologique du domaine de l’Anti-Atlas (Geological history of the Anti-Atlas region). In Géologie du Maroc. XIXe Congrès Géologique International: Monographies Régionales, 3e Série: Maroc (Geology of Morocco. The 19th International Geological Congress: Regional Monographs, 3rd Series: Morocco) (Choubert, G. and Marçais, J., eds), No. 6, 77–194.
Clausen, S., Álvaro, J. J. and Zamora, S. 2014. Replacement of benthic communities in two Neoproterozoic–Cambrian subtropical-to-temperate rift basins, High Atlas and Anti-Atlas, Morocco. Journal of African Earth Sciences, 98, 72–93.
https://doi.org/10.1016/j.jafrearsci.2014.03.025
Cole, D. B., Mills, D. B., Erwin, D. H., Sperling, E. A., Porter, S. M., Reinhard, C. T. et al. 2020. On the co-evolution of surface oxygen levels and animals. Geobiology, 18, 260–281.
https://doi.org/10.1111/gbi.12382
Cullers, R. L. 1995. The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountain region, Colorado, U.S.A. Chemical Geology, 123, 107–131.
https://doi.org/10.1016/0009-2541(95)00050-V
Cullers, R. L. 2002. Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical Geology, 191, 305–327.
https://doi.org/10.1016/S0009-2541(02)00133-X
Debrenne, F. and Debrenne, M. 1995. Archaeocyaths of the Lower Cambrian of Morocco. Beringeria, 2, 121–145.
Destombes, J., Hollard, H. and Willefert, S. 1985. Lower Palaeozoic rocks of Morocco. In Lower Palaeozoic Rocks of the World. Lower Palaeozoic of North-Western and West Central Africa (Holland, C. H., ed.). John Wiley and Sons, Chichester, 4, 91–336.
Ducrot, J. and Lancelot, J. R. 1977. Problème de la limite Précambrien–Cambrien: étude radiochronologique par la méthode U/Pb sur zircon du volcan du Jbel Boho (Precambrian–Cambrian boundary problem: radiochronological study using the U/Pb method on zircon from the Jbel Boho volcano). Canadian Journal of Earth Sciences, 14, 1771–1777.
https://doi.org/10.1139/e77-243
Gasquet, D., Levresse, G., Cheilletz, A., Azizi-Samir, M. R. and Mouttaqi, A. 2005. Contribution to a geodynamic reconstruction of the Anti-Atlas (Morocco) during Pan-African times with the emphasis on inversion tectonics and metallogenic activity at the Precambrian–Cambrian boundary. Precambrian Research, 140, 157–182.
https://doi.org/10.1016/j.precamres.2005.06.009
Gasquet, D., Ennih, N., Liégeois, J. P., Soulaimani, A. and Michard, A. 2008. The Pan-African belt. In Continental Evolution: The Geology of Morocco. Structure, Stratigraphy, and Tectonics of the African-Atlantic-Mediterranean Triple Junction (Michard, A., Chalouan, A., Saddiqi, O. and de Lamotte, D., eds). Lecture Notes in Earth Sciences, 116, 33–64.
https://doi.org/10.1007/978-3-540-77076-3_2
Geyer, G. and Landing, E. (eds). 1995. Morocco ʼ95. The Lower–Middle Cambrian standard of Gondwana. Beringeria, 2, 1–171.
Grotzinger, J. and Knoll, A. 1995. Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios, 10, 578–596.
https://doi.org/10.2307/3515096
Halverson, G. P. and Shields-Zhou, G. 2011. Chemostratigraphy and the Neoproterozoic glaciations. Geological Society, London, Memoirs, 36, 51–66.
https://doi.org/10.1144/M36.4
Harland, W. B. 2007. Origins and assessment of snowball Earth hypotheses. Geological Magazine, 144, 633–642.
https://doi.org/10.1017/S0016756807003391
Hatch, J. R. and Leventhal, J. S. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99, 65–82.
https://doi.org/10.1016/0009-2541(92)90031-Y
Hayashi, K., Fujisawa, H., Holland, H. and Ohmoto, H. 1997. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61, 4115–4137.
https://doi.org/10.1016/S0016-7037(97)00214-7
Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., Benn, D. I., Brocks, J. J., Cohen, P. A. et al. 2017. Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advances, 3, 1600983.
https://doi.org/10.1126/sciadv.1600983
Hupé, P. 1960. Sur le Cambrien inférieur du Maroc (On the Lower Cambrian of Morocco). In Reports of the 21st International Geological Congress, 8, 75–85.
Jones, B. and Manning, D. A. C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111, 111–129.
https://doi.org/10.1016/0009-2541(94)90085-X
Kent, A. J. R. and Ungerer, C. A. 2005. Production of barium and light rare earth element oxides during LA-ICP-MS microanalysis. Journal of Analytical Atomic Spectrometry, 20, 1256–1262.
https://doi.org/10.1039/b505734e
Kimura, H. and Watanabe, Y. 2001. Ocean anoxia at the Precambrian–Cambrian boundary. Geology, 29, 995–998.
https://doi.org/10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2
Knoll, A. and Carroll, S. 1999. Early animal evolution: Emerging views from comparative biology and geology. Science, 284, 2129–2137.
https://doi.org/10.1126/science.284.5423.2129
Lawrence, M. G., Collerson, K. D. and Kamber, B. S. 2006. Significance of the longevity of the marine rare earth pattern. Geochimica et Cosmochimica Acta, 70, A345.
https://doi.org/10.1016/j.gca.2006.06.698
Levinton, J. S. 2008. The Cambrian Explosion: How do we use the evidence. BioScience, 58, 855–864.
https://doi.org/10.1641/B580912
Madhavaraju, J. and Ramasamy, S. 2002. Petrography and geochemistry of Late Maastrichtian – Early Paleocene sediments of Tiruchirapalli Cretaceous, Tamil Nadu – paleoweathering and provenance implications. Journal of the Geological Society of India, 59, 133–142.
Maloof, A. C., Schrag, D. P., Crowley, J. L. and Bowring, S. A. 2005. An expanded record of early Cambrian carbon cycling for the Anti-Atlas margin, Morocco. Canadian Journal Earth Sciences, 42, 2195–2216.
https://doi.org/10.1139/e05-062
Narbonne, G. M. 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33, 421–442.
https://doi.org/10.1146/annurev.earth.33.092203.122519
Nozaki, Y., Zhang, J. and Amakawa, H. 1997. The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters, 148, 329–340.
https://doi.org/10.1016/S0012-821X(97)00034-4
Och, L. M. and Shields-Zhou, G. A. 2012. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Science Reviews, 110, 26–57.
https://doi.org/10.1016/j.earscirev.2011.09.004
Poulton, S. W. and Canfield, D. E. 2011. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements, 7, 107–112.
https://doi.org/10.2113/gselements.7.2.107
Rowland, S. M. and Shapiro, R. S. 2002. Reef patterns and environmental influences in the Cambrian and earliest Ordovician. In Phanerozoic Reef Patterns (Kiessling, W., Flügel, E. and Golonka, J., eds). SEPM Speciale Publication, 72, 95–128.
https://doi.org/10.2110/pec.02.72.0095
Rudnick, R. L. and Gao, S. 2003. Composition of the continental crust. In Treatise on Geochemistry (Holland, H. D. and Turekian, K. K., eds). Elsevier, Amsterdam, 3, 1–64.
https://doi.org/10.1016/B0-08-043751-6/03016-4
Saadi, S., Hilali, E., Bensaïd, M., Boudda, A. and Dahmani, M. 1985. Carte Géologique de Maroc: Rabat, Morocco, Ministère du l’Énergie et des Mines, Service Géologique du Maroc, scale 1:1,000,000 (Geological Map of Morocco: Rabat, Morocco, Ministry of Energy and Mines, Geological Service of Morocco, scale 1:1,000,000).
Schmitt, M. 1979. The Section of Tiout (Precambrian/Cambrian Boundary Beds, Anti-Atlas, Morocco): Stromatolites and their Biostratigraphy. Arbeiten aus dem Paläontologischen Institut Würzburg, 2.
https://doi.org/10.1017/S0016756800041145
Schmitt, M. and Monninger, W. 1977. Stromatolites and thrombolites in Precambrian/Cambrian boundary beds of the Anti-Atlas, Morocco: preliminary results. In Fossil Algae (Flügel, E., ed.). Springer, Berlin, Heidelberg, 80–85.
https://doi.org/10.1007/978-3-642-66516-5_8
Sdzuy, K. 1978. The Precambrian–Cambrian boundary beds in Morocco (Preliminary Report). Geological Magazine, 115, 83–94.
https://doi.org/10.1017/S0016756800041133
Shields, G. A. and Webb, G. E. 2004. Has the REE composition of seawater changed over geological time? Chemical Geology, 204, 103–107.
https://doi.org/10.1016/j.chemgeo.2003.09.010
Smith, M. P. and Harper, D. A. T. 2013. Causes of the Cambrian Explosion. Science, 341, 1355–1356.
https://doi.org/10.1126/science.1239450
Sperling, E. A., Knoll, A. H. and Girguis, P. R. 2015. The ecological physiology of Earth’s second oxygen revolution. Annual Review of Ecology, Evolution, and Systematics, 46, 215–235.
https://doi.org/10.1146/annurev-ecolsys-110512-135808
Taylor, S. R. and McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
Thomas, R. J., Chevallier, L. P., Gresse, P. G., Harmer, R. E., Eglington, B. M., Armstrong, R. A. et al. 2002. Precambrian evolution of the Sirwa Window, Anti-Atlas Orogen, Morocco. Precambrian Research, 118, 1–57.
https://doi.org/10.1016/S0301-9268(02)00075-X
Thomas, R. J., Fekkak, A., Ennih, N., Errami, E., Loughlin, S. C., Gresse, P. G. et al. 2004. A new lithostratigraphic framework for the Anti-Atlas Orogen, Morocco. Journal of African Earth Sciences, 39, 217–226.
https://doi.org/10.1016/j.jafrearsci.2004.07.046
Tostevin, R., Clarkson, M. O., Gangl, S., Shields, G. A., Wood, R. A., Bowyer, F. et al. 2019. Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans. Earth and Planetary Science Letters, 506, 104–112.
https://doi.org/10.1016/j.epsl.2018.10.045
Tribovillard, N., Algeo, T. J., Lyons, T. and Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232, 12–32.
https://doi.org/10.1016/j.chemgeo.2006.02.012
Tribovillard, N., Algeo, T. J., Baudin, F. and Riboulleau, A. 2012. Analysis of marine environmental conditions based on molybdenum-uranium covariation – applications to Mesozoic paleoceanography. Chemical Geology, 324, 46–58.
https://doi.org/10.1016/j.chemgeo.2011.09.009
Tucker, M. E. 1986. Carbon isotope excursions in Precambrian/ Cambrian boundary beds, Morocco. Nature, 319, 48–50.
https://doi.org/10.1038/319048a0
Turner, E. C. 2021. Possible poriferan body fossils in early Neoproterozoic microbial reefs. Nature, 596, 87–91.
https://doi.org/10.1038/s41586-021-03773-z
Walsh, G. J., Benziane, F., Aleinikoff, J. N., Harrison, R. W., Yazidi, A., Burton, W. C. et al. 2012. Neoproterozoic tectonic evolution of the Jebel Saghro and Bou Azzer–El Graara inliers, eastern and central Anti-Atlas, Morocco. Precambrian Research, 216–219, 23–62.
https://doi.org/10.1016/j.precamres.2012.06.010
Wang, S., Zou, C., Dong, D., Wang, Y., Li, X., Huang, J. et al. 2015. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence. Marine and Petroleum Geology, 66, 660–672.
https://doi.org/10.1016/j.marpetgeo.2015.07.009
Wanty, R. B. and Goldhaber, M. B. 1992. Thermodynamics and kinetics of reactions involving vanadium in natural systems – accumulation of vanadium in sedimentary rocks. Geochimica et Cosmochimica Acta, 56, 1471–1483.
https://doi.org/10.1016/0016-7037(92)90217-7
Wei, G. Y., Planavsky, N. J., Tarhan, L. G., Chen, X., Wei, W., Li, D. et al. 2018. Marine redox fluctuation as a potential trigger for the Cambrian explosion. Geology, 46, 587–590.
https://doi.org/10.1130/G40150.1
Wignall, P. B. and Myers, K. J. 1988. Interpreting benthic oxygen levels in mudrocks: a new approach. Geology, 16, 452–455.
https://doi.org/10.1130/0091-7613(1988)016<0452:IBOLIM>2.3.CO;2
Wood, R., Liu, A. G., Bowyer, F., Wilby, P. R., Dunn, F. S., Kenchington, C. G. et al. 2019. Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nature Ecology & Evolution, 3, 528–538.
https://doi.org/10.1038/s41559-019-0821-6
Zhang, X. L. and Shu, D. G. 2021. Current understanding on the Cambrian Explosion: questions and answers. PalZ, 95, 641–660.
https://doi.org/10.1007/s12542-021-00568-5