Molecular phylogenetic studies of land plant (embryophyte) origins have begun to tease apart those evolutionary contributions derived from prior algal genes and those de novo genes that evolved during a charophyte–embryophyte transition. Applying the concept of genomic assembly in plant evolution to the fossil record leads to a paradigm shift in the interpretation of the Ordovician record of land plants. Traditional phylogenetic thinking requires fossil species taxa to occupy nodes on a phylogeny. An evo-devo approach can view character evolution separately from species taxa, freeing up fossil spores and tissue fragments to become clues to underlying developmental pathways or gene regulatory networks. This results in a re-assessment of what is meant by the presence of land plants in the Ordovician landscape. The new model helps to reconcile discrepancies between molecular time-trees and the “missing” record of fossil plants during the Ordovician Period.
Bower, F. O. 1908. The Origin of a Land Flora: A Theory Based on the Facts of Alternation. Macmillan and Co., Limited, London, Bombay, Calcutta, Melbourne.
https://doi.org/10.5962/bhl.title.1698
Brown, R. C. and Lemmon, B. E. 2011. Spores before sporophytes: hypothesizing the origin of sporogenesis at the algal–plant transition. New Phytologist, 190(4), 875–881.
https://doi.org/10.1111/j.1469-8137.2011.03709.x
Brown, R. C., Lemmon, B. E. and Shimamura, M. 2010. Diversity in meiotic spindle origin and determination of cytokinetic planes in sporogenesis of complex thalloid liverworts (Marchantiopsida). Journal of Plant Research, 123(4), 589–605.
https://doi.org/10.1007/s10265-009-0286-9
Brown, R. C., Lemmon, B. E., Shimamura, M., Villarreal, J. C. and Renzaglia, K. S. 2015. Spores of relictual bryophytes: Diverse adaptations to life on land. Review of Palaeobotany and Palynology, 216, 1–17.
https://doi.org/10.1016/j.revpalbo.2015.01.004
Burgess, N. D. and Edwards, D. 1991. Classification of uppermost Ordovician to Lower Devonian tubular and filamentous macerals from the Anglo-Welsh Basin. Botanical Journal of the Linnean Society, 106(1), 41–66.
https://doi.org/10.1111/j.1095-8339.1991.tb02282.x
Delwiche, C. F., Graham, L. E. and Thomson, N. 1989. Lignin-like compounds and sporopollenin Coleochaete, an algal model for land plant ancestry. Science,245(4916), 399–401.
https://doi.org/10.1126/science.245.4916.399
Edwards, D., Honegger, R., Axe, L. and Morris, J. L. 2018. Anatomically preserved Silurian “nematophytes” from the Welsh Borderland (UK). Botanical Journal of the Linnean Society, 187(2), 272–291.
https://doi.org/10.1093/botlinnean/boy022
Floyd, S. K. and Bowman, J. L. 2007. The ancestral developmental tool kit of land plants. International Journal of Plant Sciences, 168(1), 1–35.
https://doi.org/10.1086/509079
Ghavidel-Syooki, M. 2016. Cryptospore and trilete spore assemblages from the Late Ordovician (Katian–Hirnantian) Ghelli Formation, Alborz Mountain Range, Northeastern Iran: Palaeophytogeographic and palaeoclimatic implications. Review of Palaeobotany and Palynology, 231, 48–71.
https://doi.org/10.10 16/j.revpalbo.2016.04.006
Ghavidel-Syooki, M. and Piri-Kangarshahi, M. H. 2021. Biostratigraphy of acritarchs, chitinozoans, and miospores from Upper Ordovician sequences in Kuh-e Boghou, southwest of Kashmar, eastern central Iran: Stratigraphic and paleogeographic implications. Review of Palaeobotany and Palynology, 284, 104337.
https://doi.org/10.1016/j.revpalbo.2020.104337
Graham, L. E. 1984. Coleochaete and the origin of land plants. American Journal of Botany, 71(4), 603–608.
https://doi.org/10.2307/2443336
https://doi.org/10.1002/j.1537-2197.1984.tb12546.x
Gray, J. and Boucot, A. J. 1977. Early vascular land plants: proof and conjecture. Lethaia, 10(2), 145–174.
https://doi.org/10.1111/j.1502-3931.1977.tb00604.x
Habgood, K. S. 2000. Two cryptospore-bearing land plants from the Lower Devonian (Lochkovian) of the Welsh Borderland. Botanical Journal of the Linnean Society, 133(2), 203–227.
https://doi.org/10.1111/j.1095-8339.2000.tb01543.x
Haig, D. 2010. What do we know about Charophyte (Streptophyta) life cycles? Journal of Phycology, 46(5), 860–867.
https://doi.org/10.1111/j.1529-8817.2010.00874.x
Haig, D. 2015. Coleochaete and the origin of sporophytes. American Journal of Botany, 102(3), 417–422.
https://doi.org/10.3732/ajb.1400526
Hall, J. D. and McCourt, R. M. 2017. Zygnematophyta. In Handbook of the Protists (Archibald, J. M., Simpson, A. G. B. and Slamovits., eds). Springer, Cham, 135–163.
https://doi.org/10.1007/978-3-319-28149-0_41
Harris, B. J., Clark, J. W., Schrempf, D., Szöllősi, G. J., Donoghue, P. C. J., Hetherington, A. M. et al. 2022. Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants. Nature Ecology & Evolution, 6, 1634–1643.
https://doi.org/10.1038/s41559-022-01885-x
Hemsley, A. R. 1994. The origin of the land plant sporophyte: an interpolational scenario. Biological Reviews, 69(3), 263–273.
https://doi.org/10.1111/j.1469-185X.1994.tb01270.x
Hueber, F. M. 2001. Rotted wood-alga-fungus: the history and life of Prototaxites Dawson 1859. Review of Palaeobotany and Palynology, 116(1–2), 123–158.
https://doi.org/10.1016/S0034-6667(01)00058-6
Loron, C. C., Dzul, E. R., Orr, P. J., Gromov, A. V., Fraser, N. C. and McMahon, S. 2023. Molecular fingerprints resolve affinities of Rhynie chert organic fossils. Nature Communications, 14, 1387.
https://doi.org/10.1038/s41467-023-37047-1
Morris, J. L., Edwards D., Richardson, J. B. and Axe, L. 2012. New dyad-producing plants from the Lower Devonian (Lochkovian) of the Welsh Borderland. Botanical Journal of the Linnean Society, 169(4), 569–595.
https://doi.org/10.1111/j.1095-8339.2012.01231.x
Niklas, K. J. and Smocovitis, V. 1983. Evidence for a conducting strand in early Silurian (Llandoverian) plants: Implications for the evolution of the land plants. Paleobiology, 9(2), 126–137.
https://doi.org/10.1017/s009483730000751x
Renzaglia, K. S., Ashton, N. W. and Suh, D.-Y. 2023. Sporogenesis in Physcomitrium patens: Intergenerational collaboration and the development of the spore wall and aperture. Frontiers in Cell and Developmental Biology, 11, 1165293.
https://doi.org/10.3389/fcell.2023.1165293
Sebé-Pedrós, A., Degnan, B. M. and Ruiz-Trillo, I. 2017. The origin of Metazoa: a unicellular perspective. Nature Reviews Genetics, 18(8), 498–512.
https://doi.org/10.1038/nrg.2017.21
Strother, P. K. 1993. Clarification of the genus Nematothallus Lang. Journal of Paleontology, 67(6), 1090–1094.
https://www.jstor.org/stable/1306131
https://doi.org/10.1017/S0022336000025476
Strother, P. K. and Foster, C. 2021. A fossil record of land plant origins from charophyte algae. Science, 373(6556), 792–796.
https://doi.org/10.1126/science.abj2927
Strother, P. K. and Taylor, W. A. 2018. The evolutionary origin of the plant spore in relation to the antithetic origin of the plant sporophyte. In Transformative Paleobotany (Krings, M., Harper, C. J., Cuneo, N. R. and Rothwell, G. W., eds). Elsevier, London, 3–20.
https://doi.org/10.1016/b978-0-12-813012-4.00001-2
Taylor, W. A. and Wellman, C. H. 2009. Ultrastructure of enigmatic phytoclasts (banded tubes) from the Silurian–lower Devonian: Evidence for affinities and role in early terrestrial ecosystems. Palaios, 24(3–4), 167–180.
https://doi.org/10.2110/palo.2008.p0 8-046r
Tomescu, A. M. F. and Rothwell, G. W. 2022. Fossils and plant evolution: structural fingerprints and modularity in the evo-devo paradigm. EvoDevo, 13(1), 8.
https://doi.org/10.1186/s13227-022-00192-7
Wagner, G. P. 2014. Homology, Genes, and Evolutionary Innovation. Princeton University Press, Princeton, NJ.
Wellman, C. H. and Gray, J. 2000. The microfossil record of early land plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 355(1398), 717–732.
https://doi.org/10.1098/rstb.2000.0612
Wellman, C. H., Edwards, D. and Axe, L. 1998. Permanent dyads in sporangia and spore masses from the Lower Devonian of the Welsh Borderland. Botanical Journal of the Linnean Society, 127(2), 117–147.
https://doi.org/10.1111/j.1095-8339.1998.tb02092.x
Wellman, C. H., Osterloff, P. L. and Mohiuddin, U. 2003. Fragments of the earliest land plants. Nature, 425(6955), 282–285.
https://doi.org/10.1038/nature01884
Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N. et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences of the United States of America, 111(45), E4859–E4868.
https://doi.org/10.1073/pnas.1323926111
Wodniok, S., Brinkmann, H., Glöckner, G., Heidel, A. J., Philippe, H., Melkonian, M. et al. 2011. Origin of land plants: Do conjugating green algae hold the key? BMC Evolutionary Biology, 11(1), 104.
https://doi.org/10.1186/1471-2148-11-104
Zhong, B., Liu, L., Yan, Z. and Penny, D. 2013. Origin of land plants using the multispecies coalescent model. Trends in Plant Science, 18(9), 492–495.
https://doi.org/10.1016/j.tplants.2013.04.009