ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Short communication
An evo-devo perspective on no Ordovician land plants; pp. 102–105
PDF | https://doi.org/10.3176/earth.2023.31

Author
Paul K. Strother
Abstract

Molecular phylogenetic studies of land plant (embryophyte) origins have begun to tease apart those evolutionary contributions derived from prior algal genes and those de novo genes that evolved during a charophyte–embryophyte transition. Applying the concept of genomic assembly in plant evolution to the fossil record leads to a paradigm shift in the interpretation of the Ordovician record of land plants. Traditional phylogenetic thinking requires fossil species taxa to occupy nodes on a phylogeny. An evo-devo approach can view character evolution separately from species taxa, freeing up fossil spores and tissue fragments to become clues to underlying developmental pathways or gene regulatory networks. This results in a re-assessment of what is meant by the presence of land plants in the Ordovician landscape. The new model helps to reconcile discrepancies between molecular time-trees and the “missing” record of fossil plants during the Ordovician Period.

References

Bower, F. O. 1908. The Origin of a Land Flora:  A Theory Based on the Facts of Alternation. Macmillan and Co., Limited, London, Bombay, Calcutta, Melbourne.
https://doi.org/10.5962/bhl.title.1698

Brown, R. C. and Lemmon, B. E. 2011. Spores before sporophytes: hypothesizing the origin of sporogenesis at the algal–plant transition. New Phytologist190(4), 875–881. 
https://doi.org/10.1111/j.1469-8137.2011.03709.x

Brown, R. C., Lemmon, B. E. and Shimamura, M. 2010. Diversity in meiotic spindle origin and determination of cytokinetic planes in sporogenesis of complex thalloid liverworts (Marchantiopsida). Journal of Plant Research123(4), 589–605. 
https://doi.org/10.1007/s10265-009-0286-9

Brown, R. C., Lemmon, B. E., Shimamura, M., Villarreal, J. C. and Renzaglia, K. S. 2015. Spores of relictual bryophytes: Diverse adaptations to life on land. Review of Palaeobotany and Palynology216, 1–17. 
https://doi.org/10.1016/j.revpalbo.2015.01.004

Burgess, N. D. and Edwards, D. 1991. Classification of uppermost Ordovician to Lower Devonian tubular and filamentous macerals from the Anglo-Welsh Basin. Botanical Journal of the Linnean Society106(1), 41–66. 
https://doi.org/10.1111/j.1095-8339.1991.tb02282.x

Delwiche, C. F., Graham, L. E. and Thomson, N. 1989. Lignin-like compounds and sporopollenin Coleochaete, an algal model for land plant ancestry. Science,245(4916), 399–401. 
https://doi.org/10.1126/science.245.4916.399

Edwards, D., Honegger, R., Axe, L. and Morris, J. L. 2018. Anatomically preserved Silurian “nematophytes” from the Welsh Borderland (UK). Botanical Journal of the Linnean Society187(2), 272–291. 
https://doi.org/10.1093/botlinnean/boy022

Floyd, S. K. and Bowman, J. L. 2007. The ancestral developmental tool kit of land plants. International Journal of Plant Sciences168(1), 1–35. 
https://doi.org/10.1086/509079

Ghavidel-Syooki, M. 2016. Cryptospore and trilete spore assemblages from the Late Ordovician (Katian–Hirnantian) Ghelli Formation, Alborz Mountain Range, Northeastern Iran: Palaeophytogeographic and palaeoclimatic implications. Review of Palaeobotany and Palynology231, 48–71. 
https://doi.org/10.10 16/j.revpalbo.2016.04.006

Ghavidel-Syooki, M. and Piri-Kangarshahi, M. H. 2021. Biostratigraphy of acritarchs, chitinozoans, and miospores from Upper Ordovician sequences in Kuh-e Boghou, southwest of Kashmar, eastern central Iran: Stratigraphic and paleogeographic implications. Review of Palaeobotany and Palynology284, 104337. 
https://doi.org/10.1016/j.revpalbo.2020.104337

Graham, L. E. 1984. Coleochaete and the origin of land plants. American Journal of Botany71(4), 603–608. 
https://doi.org/10.2307/2443336
https://doi.org/10.1002/j.1537-2197.1984.tb12546.x

Gray, J. and Boucot, A. J. 1977. Early vascular land plants: proof and conjecture. Lethaia10(2), 145–174. 
https://doi.org/10.1111/j.1502-3931.1977.tb00604.x

Habgood, K. S. 2000. Two cryptospore-bearing land plants from the Lower Devonian (Lochkovian) of the Welsh Borderland. Botanical Journal of the Linnean Society133(2), 203–227. 
https://doi.org/10.1111/j.1095-8339.2000.tb01543.x

Haig, D. 2010. What do we know about Charophyte (Streptophyta) life cycles? Journal of Phycology46(5), 860–867. 
https://doi.org/10.1111/j.1529-8817.2010.00874.x

Haig, D. 2015. Coleochaete and the origin of sporophytes. American Journal of Botany102(3), 417–422. 
https://doi.org/10.3732/ajb.1400526

Hall, J. D. and McCourt, R. M. 2017. Zygnematophyta. In Handbook of the Protists (Archibald, J. M., Simpson, A. G. B. and Slamovits., eds). Springer, Cham, 135–163. 
https://doi.org/10.1007/978-3-319-28149-0_41

Harris, B. J., Clark, J. W., Schrempf, D., Szöllősi, G. J., Donoghue, P. C. J., Hetherington, A. M. et al. 2022. Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants. Nature Ecology & Evolution6, 1634–1643. 
https://doi.org/10.1038/s41559-022-01885-x

Hemsley, A. R. 1994. The origin of the land plant sporophyte: an interpolational scenario. Biological Reviews69(3), 263–273. 
https://doi.org/10.1111/j.1469-185X.1994.tb01270.x

Hueber, F. M. 2001. Rotted wood-alga-fungus: the history and life of Prototaxites Dawson 1859. Review of Palaeobotany and Palynology116(1–2), 123–158. 
https://doi.org/10.1016/S0034-6667(01)00058-6

Loron, C. C., Dzul, E. R., Orr, P. J., Gromov, A. V., Fraser, N. C. and McMahon, S. 2023. Molecular fingerprints resolve affinities of Rhynie chert organic fossils. Nature Communications14, 1387. 
https://doi.org/10.1038/s41467-023-37047-1

Morris, J. L., Edwards D., Richardson, J. B. and Axe, L. 2012. New dyad-producing plants from the Lower Devonian (Lochkovian) of the Welsh Borderland. Botanical Journal of the Linnean Society169(4), 569–595. 
https://doi.org/10.1111/j.1095-8339.2012.01231.x

Niklas, K. J. and Smocovitis, V. 1983. Evidence for a conducting strand in early Silurian (Llandoverian) plants: Implications for the evolution of the land plants. Paleobiology9(2), 126–137. 
https://doi.org/10.1017/s009483730000751x

Renzaglia, K. S., Ashton, N. W. and Suh, D.-Y. 2023. Sporogenesis in Physcomitrium patens: Intergenerational collaboration and the development of the spore wall and aperture. Frontiers in Cell and Developmental Biology11, 1165293. 
https://doi.org/10.3389/fcell.2023.1165293

Sebé-Pedrós, A., Degnan, B. M. and Ruiz-Trillo, I. 2017. The origin of Metazoa: a unicellular perspective. Nature Reviews Genetics18(8), 498–512. 
https://doi.org/10.1038/nrg.2017.21

Strother, P. K. 1993. Clarification of the genus Nematothallus Lang. Journal of Paleontology67(6), 1090–1094. 
https://www.jstor.org/stable/1306131
https://doi.org/10.1017/S0022336000025476

Strother, P. K. and Foster, C. 2021. A fossil record of land plant origins from charophyte algae. Science373(6556), 792–796. 
https://doi.org/10.1126/science.abj2927

Strother, P. K. and Taylor, W. A. 2018. The evolutionary origin of the plant spore in relation to the antithetic origin of the plant sporo­phyte. In Transformative Paleobotany (Krings, M., Harper, C. J., Cuneo, N. R. and Rothwell, G. W., eds). Elsevier, London, 3–20. 

https://doi.org/10.1016/b978-0-12-813012-4.00001-2

Taylor, W. A. and Wellman, C. H. 2009. Ultrastructure of enigmatic phytoclasts (banded tubes) from the Silurian–lower Devonian: Evidence for affinities and role in early terrestrial ecosystems. Palaios24(3–4), 167–180. 
https://doi.org/10.2110/palo.2008.p0 8-046r

Tomescu, A. M. F. and Rothwell, G. W. 2022. Fossils and plant evolution: structural fingerprints and modularity in the evo-devo paradigm. EvoDevo13(1), 8. 
https://doi.org/10.1186/s13227-022-00192-7

Wagner, G. P. 2014. Homology, Genes, and Evolutionary Innovation. Princeton University Press, Princeton, NJ.  

Wellman, C. H. and Gray, J. 2000. The microfossil record of early land plants. Philosophical Transactions of the Royal Society B: Biological Sciences355(1398), 717–732. 
https://doi.org/10.1098/rstb.2000.0612

Wellman, C. H., Edwards, D. and Axe, L. 1998. Permanent dyads in sporangia and spore masses from the Lower Devonian of the Welsh Borderland. Botanical Journal of the Linnean Society127(2), 117–147. 
https://doi.org/10.1111/j.1095-8339.1998.tb02092.x

Wellman, C. H., Osterloff, P. L. and Mohiuddin, U. 2003. Fragments of the earliest land plants. Nature425(6955), 282–285. 
https://doi.org/10.1038/nature01884

Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N. et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences of the United States of America111(45), E4859–E4868. 
https://doi.org/10.1073/pnas.1323926111

Wodniok, S., Brinkmann, H., Glöckner, G., Heidel, A. J., Philippe, H., Melkonian, M. et al. 2011. Origin of land plants: Do conjugating green algae hold the key? BMC Evolu­tionary Biology11(1), 104. 
https://doi.org/10.1186/1471-2148-11-104

Zhong, B., Liu, L., Yan, Z. and Penny, D. 2013. Origin of land plants using the multispecies coalescent model. Trends in Plant Science18(9), 492–495. 
https://doi.org/10.1016/j.tplants.2013.04.009

Back to Issue