ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Short communication
Diversification and speciation among Laurentian brachiopods during the GOBE: insights from basinal and regional analyses; pp. 98–101
PDF | https://doi.org/10.3176/earth.2023.69

Authors
Alycia L. Stigall, Shaolin M. Censullo, Sarah A. Hennessey, Jennifer E. Bauer, Adriane R. Lam, David F. Wright
Abstract

Full understanding of diversity dynamics during the Great Ordovician Biodiversification Event (GOBE) requires analyses that investigate regional and species-level data and patterns. In this study, we combine bedding-plane scale data on brachiopod species counts and shell size col­lected from the Simpson Group of Oklahoma, USA, with species-level phylogenetic biogeography for three articulated brachiopod lineages that occurred throughout Laurentia. From these data, we ascertain that the primary influences of brachiopod shell size and diversity in the Simpson Group reflect global drivers, notably temporal position and paleotemperature. Similarly, the primary speciation pattern observed within Hesperorthis, Mimella, and Oepikina is the oscillation in speciation mode between dispersal and vicariance, which reflect the connection and disconnection of geographic areas, respectively. Processes that facilitate cyclical connectivity are global to regional in scale such as oceanographic changes, glacial cycles, or tectonic pulses. Therefore, both regional and continental scale analyses reinforce the importance of global factors in driving diversification during the GOBE.

References

Avila, T. D., Saltzman, M. R., Adiatma, Y. D., Joachimski, M. M., Griffith, E. M., and Olesik, J. W. 2022. Role of seafloor production versus continental basalt weathering in Middle to Late Ordovician seawater 87Sr/86Sr and climate. Earth and Planetary Science Letters593, 117641. 
https://doi.org/10.1016/j.epsl.2022.117641

Bapst, D. W. 2012. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods in Ecology and Evolution, 3, 803–807. 
https://doi.org/10.1111/j.2041-210X.2012.00223.x

Censullo, S. M. 2020. Did alternating dispersal and vicariance con-tribute to increased biodiversification during the Great Ordovician Biodiversification Event? A phylogenetic test using brachiopods. MS thesis. Ohio University, USA. 
http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1586947231228706
https://doi.org/10.1130/abs/2019AM-333129

Edwards, C. T. and Saltzman, M. R. 2015. Paired carbon isotopic analysis of Ordovician bulk carbonate (δ13Ccarb) and organic matter (δ13Corg) spanning the Great Ordovician Biodiversification Event. Palaeogeography, Palaeoclimatology, Palaeoecology458, 102–117. 
https://doi.org/10.1016/j.palaeo.2015.08.005

Harper, D. A. T., Rasmussen, C. M. Ø., Liljeroth, M., Blodgett, R. B., Candela, Y., Jin, J. et al. 2013. Biodiversity, biogeography and phylogeography of Ordovician rhynchonelliform brachiopods. Geological Society, London, Memoirs38, 127–144.
https://doi.org/10.1144/M38.11

Hennessey, S. A. 2023. Constraining morphological change across the Great Ordovician Biodiversification Event: A case study from the Arbuckle Mountains of Oklahoma. MS thesis. Ohio University, USA.
https://doi.org/10.1130/abs/2022NC-375167

Hunt, G. 2019. paleoTS: Analyze Paleontological Time-Series. Version 0.5.2. R package.

Kröger, B., Franeck, F. and Rasmussen, C. M. Ø. 2019. The evolutionary dynamics of the early Palaeozoic marine biodiversity accumulation. Proceedings of the Royal Society B286(1909), 20191634.
https://doi.org/10.1098/rspb.2019.1634

Lam, A. R., Stigall, A. L. and Matzke, N. J. 2018. Dispersal in the Ordovician: speciation patterns and paleobiogeographic analyses of brachiopods and trilobites. Palaeogeography, Palaeoclimatology, Palaeoecology489, 147–165.
https://doi.org/10.1016/j.palaeo.2017.10.006

Lam, A. R., Sheffield, S. L. and Matzke, N. J. 2021. Estimating dispersal and evolutionary dynamics in diploporan blastozoans (Echinodermata) across the Great Ordovician Biodiversification Event. Paleobiology47, 198–220.
https://doi.org/10.1017/pab.2020.24

Lieberman, B. L. 2000. Paleobiogeography: Using Fossils to Study Global Change, Plate Tectonics, and Evolution. Kluwer Academic/ Plenum Publishers, New York. 

Matzke, N. J. 2013. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography5, 242–248.
https://doi.org/10.21425/F55419694

Pohl, A., Nardin, E., Vandenbroucke, T. R. A. and Donnadieu, Y. 2016. High dependence of Ordovician ocean surface circulation on atmospheric CO2 levels. Palaeogeography, Palaeoclimatology, Palaeoecology458, 39–51. 
https://doi.org/10.1016/j.palaeo.2015.09.036

Rasmussen, C. M. Ø., Ullmann, C. V., Jakobsen, K. G., Lindskog, A., Hansen, J., Hansen, T. et al. 2016. Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Scientific Reports6, 18884.
https://doi.org/10.1038/srep18884

Rasmussen, C. M. Ø., Kröger, B., Nielsen, M. L. and Colmenar, J. 2019. Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proceedings of the National Academy of Sciences116, 7207–7213.
https://doi.org/10.1073/pnas.1821123116

Ridgeway, G., Greenwell, B., Boehmke, B. and Cunningham, J. 2020. gbm: Generalized Boosted Regression Models. Version 2.1.8. R package.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S. et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology61, 539–542.
https://doi.org/10.1093/sysbio/sys029

Stigall, A. L. 2018. How is biodiversity produced? Examining speciation processes during the GOBE. Lethaia51, 165–172.
https://doi.org/10.1111/let.12232

Stigall, A. L., Bauer, J. E., Lam, A. R. and Wright, D. F. 2017. Biotic immigration events, speciation, and the accumulation of bio­diversity in the fossil record. Global and Planetary Change148, 242–257.
https://doi.org/10.1016/j.gloplacha.2016.12.008

Stigall, A. L., Edwards, C. T., Freeman, R. L. and Rasmussen, C. M. Ø. 2019. Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: Darriwilian assembly of early Paleozoic building blocks. Palaeogeography, Palaeoclimatology, Palaeoecology530, 249–270.
https://doi.org/10.1016/j.palaeo.2019.05.034

Trubovitz, S. and Stigall, A. L. 2016. Synchronous diversification of Laurentian and Baltic rhynchonelliform brachiopods: implications for regional versus global triggers of the Great Ordovician Biodiversification Event. Geology44, 743–746.
https://doi.org/10.1130/G38083.1

Wright, D. F. 2017. Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata). Journal of Paleontology91, 799–814.
https://doi.org/10.1017/jpa.2016.141

Wright, D. F. and Toom, U. 2017. New crinoids from the Baltic region (Estonia): Fossil tip-dating phylogenetics constrains the origin and Ordovician–Silurian diversification of the Flexibilia (Echinodermata). Palaeontology60, 893–910.
https://doi.org/10.1111/pala.12324

Back to Issue