ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Short communication
Nitrogen and organic carbon isotope record in Tremadocian highly metalliferous black shales from Baltica; pp. 78–81
PDF | https://doi.org/10.3176/earth.2023.25

Authors
Mawo Ndiaye, Merlin Liiv, Toivo Kallaste, Sophie Graul, Rutt Hints
Abstract

Tremadocian highly metalliferous black shales and associated grey shales from the Aseri PH012B drill core (NE Estonia) in the innermost part of the Baltic Palaeobasin were targeted to record their nitrogen and organic carbon isotope variance combined with the total organic carbon and total nitrogen record. The obtained molar C/N ratios of black shales from 26 to 52 indicate a considerable loss of N compared to primary biomass. The recorded δ15N values from –2.5 to 0.2‰ likely evolved due to isotopic fractionation related to N2 fixation by primary producers, superimposed by later anoxic ammonium oxidation processes within the uppermost sediments. The high net primary productivity, which controlled the accumulation of organic-rich shallow-water complexes, was fuelled by the internal cycling of P in the sea basin and combined with intensive N exchange between marine and atmospheric pools.

References

Algeo, T. J., Meyers, P. A., Robinson, R. S., Rowe, H. and Jiang, G. Q. 2014. Icehouse-greenhouse variations in marine denitrification. Biogeosciences11(4), 1273–1295. 
https://doi.org/10.5194/bg-11-1273-2014

Dahl, T. W., Siggaard-Andersen, M. L., Schovsbo, N. H., Persson, D. O., Husted, S., Hougård, I. W. et al. 2019. Brief oxy­genation events in locally anoxic oceans during the Cambrian solves the animal breathing paradox. Scientific Reports9, 11669. 
https://doi.org/10.1038/s41598-019-48123-2

Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N. and Dunne, J. P. 2007. Spatial coupling of nitrogen inputs and losses in the ocean. Nature445(7124), 163–167. 
https://doi.org/10.1038/nature05392

Hammer, Ø. and Svensen, H. H. 2017. Biostratigraphy and carbon and nitrogen geochemistry of the SPICE event in Cambrian low-grade metamorphic black shale, Southern Norway. Palaeo geography, Palaeoclimatology, Palaeoecology468, 216–227.
https://doi.org/10.1016/j.palaeo.2016.12.016

Heinsalu, H., Kaljo, D., Kurvits, T. and Viira, V. 2003. The stratotype of the Orasoja Member (Tremadocian, Northeast Estonia): lithology, mineralogy, and biostratigraphy. Proceedings of the Estonian Academy of Sciences. Geology52(3), 135–154. 
https://doi.org/10.3176/geol.2003.3.02

Kiipli, E. and Kiipli, T. 2013. Nitrogen isotopes in kukersite and black shale implying Ordovician–Silurian seawater redox conditions. Oil Shale30(1), 60–75. 
https://doi.org/10.3176/oil.2013.1.06

Lille, Ü. 2003. Current knowledge on the origin and structure of Estonian kukersite kerogen. Oil Shale20(3), 253–263. https://www.kirj.ee/public/oilshale/3_lille_2003_3.pdf
https://doi.org/10.3176/oil.2003.3.03

Ndiaye, M., Pajusaar, S., Liiv, M., Graul, S., Kallaste, T. and Hints, R. (in press). Fine clay shuttle as a key mechanism for V hyper-enrichment in shallow water Tremadocian black shale from Baltica. Chemical Geology.
https://doi.org/10.1016/j.chemgeo.2023.121583

Schovsbo, N. H., Moron, J. M., Nielsen, A. T., Nicolas, G., Petersen, H. I. and Stouge, S. 2012. Thermal maturity of lower palaeozoic shales in north-west Europe – Calibration of proxies. In 74th EAGE Conference and Exhibition incorporating EUROPEC 2012, Copenhagen, Denmark, 47 June 2012. European Association of Geoscientists and Engineers.
https://doi.org/10.3997/2214-4609.20148534

Sigman, D. M. and Fripiat, F. 2019. Nitrogen isotopes in the ocean. In Encyclopedia of Ocean Sciences (Cochran, J., Bokuniewicz, H. and Yager, P., eds). 3rd ed. Elsevier, Oxford, 263–278. 
https://doi.org/10.1016/B978-0-12-409548-9.11605-7

Stüeken, E. E., Kipp, M. A., Koehler, M. C. and Buick, R. 2016. The evolution of Earth’s biogeochemical nitrogen cycle. Earth-Science Reviews160, 220–239. 
https://doi.org/10.1016/j.earscirev.2016.07.007

Terfelt, F., Eriksson, M. E. and Schmitz, B. 2014. The Cambrian–Ordovician transition in dysoxic facies in Baltica – diverse faunas and carbon isotope anomalies. Palaeogeography, Palaeoclimatology, Palaeoecology394, 59–73. 
https://doi.org/10.1016/j.palaeo.2013.11.021

Valley, J. W. and Cole, D. R. (eds). 2001. Stable isotope geochemistry. Reviews in Mineralogy and Geochemistry43
https://doi.org/10.1017/CBO9780511809323.008

Veski, R. and Palu, V. 2003. Investigation of Dictyonema oil shale and its natural and artificial transformation products by a vankrevelenogram. Oil Shale20(3), 265–281. 
https://doi.org/10.3176/oil.2003.3.04

Zerkle, A. L., Junium, C. K., Canfield, D. E. and House, C. H. 2008. Production of 15N-depleted biomass during cyanobacterial N2-fixation at high Fe concentrations. Journal of Geophysical Research: Biogeosciences113(G3), 1–9. 
https://doi.org/10.1029/2007JG000651

Zhang, X., Sigman, D. M., Morel, F. M. M. and Kraepiel, A. M. L. 2014. Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. Proceedings of the National Academy of Sciences of the United States of America111(13), 4782–4787. 
https://doi.org/10.1073/pnas.1402976111

Back to Issue