ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Dynamics of phytoplankton pigments in water and surface sediments of a large shallow lake; pp. 91–101
PDF | doi: 10.3176/earth.2011.2.03

Authors
Tiiu Alliksaar, Rene Freiberg, Monika Nõmm, Ilmar Tõnno, Tiina Nõges, Anu Kisand
Abstract
Our aim was to find out to which extent fossil phytoplankton pigments in the large shallow and turbid Lake Võrtsjärv carry information on the history of phytoplankton communities. For this purpose we examined how the changes in the pigment composition of surface sediments follow their changes in the water column. Depth-integrated lake water and surface sediment samples were collected weekly in May–October 2007. Considering cyanobacterial and diatom dominance in phytoplankton, we analysed fucoxanthin, diadinoxanthin and diatoxanthin as marker pigments for diatoms, zeaxanthin as a marker pigment for total cyanobacteria and canthaxanthin as a marker pigment for colonial cyanobacteria. Chlorophyll a and its derivative pheophytin a were applied as indicators for total phytoplankton.
The dynamics of phytoplankton pigments in surface sediments generally did not follow their dynamics in the water column, possibly due to intensive resuspension and a high sedimentation rate in a large and shallow lake. It was noticed that the surface sediment carries information on pigment degradation intensity and on weight and size characteristics of phytoplankton cells, which affect their sinking and floating velocities. Higher pigment contents of sediment in spring were presumably caused by lower resuspension due to high water level and slower degradation in cold water. Pheophytin a and the marker pigments of cyanobacteria were found to be persistent against degradation in upper sediment layers, which makes them useful indicators for tracking the historical changes in phytoplankton communities also in a shallow lake. Sharp decrease in chemically unstable pigment contents between the sediment surface and deeper layers indicates that only the uppermost sediment surface is resuspended in Lake Võrtsjärv. The transformation of the diatom marker carotenoid diadinoxanthin to diatoxanthin was found to occur mainly in sediments and not in the water column, and the process is not induced by excess light.
References

Airs, R. L., Atkinson, J. E. & Keely, B. J. 2001. Development and application of a high resolution liquid chromato­graphic method for the analysis of complex pigment distributions. Journal of Chromatography A, 917, 167177.
doi:10.1016/S0021-9673(01)00663-X

Bianchi, T. S., Engelhaupt, E., Westman, P., Andren, T., Rolff, C. & Elmgren, R. 2000. Cyanobacterial blooms in the Baltic Sea: natural or human induced? Limnology and Oceanography, 45, 716–726.
doi:10.4319/lo.2000.45.3.0716

Bianchi, T. S., Rolff, C., Widbom, B. & Elmgren, R. 2002. Phytoplankton pigments in Baltic Sea seston and sediments: seasonal variability, fluxes, and trans­formations. Estuarine, Coastal and Shelf Science, 55, 369–383.
doi:10.1006/ecss.2001.0911

Bonilla, S., Villeneuve, V. & Vincent, W. F. 2005. Benthic and planktonic algal communities in a high Arctic lake: pigment structure and contrasting responses to nutrient enrichment. Journal of Phycology, 41, 1120–1130.
doi:10.1111/j.1529-8817.2005.00154.x

Buchaca, T. & Catalan, J. 2007a. Factors influencing the variability of pigments in the surface sediments of mountain lakes. Freshwater Biology, 52, 1365–1379.
doi:10.1111/j.1365-2427.2007.01774.x

Buchaca, T. & Catalan, J. 2007b. On the contribution of phytoplankton and benthic biofilms to the sediment record of marker pigments in high mountain lakes. Journal of Paleolimnology, 40, 369–383.
doi:10.1007/s10933-007-9167-1

Carreto, J. I., Montoya, N., Akselman, R., Carignan, M. O., Silva, R. I. & Colleoni, D. A. C. 2008. Algal pigment patterns and phytoplankton assemblages in different water masses of the Rio de la Plata maritime front. Continental Shelf Research, 28, 1589–1606.
doi:10.1016/j.csr.2007.02.012

Cohen, A. S. 2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press, New York, 528 pp.

Descy, J. P., Frost, T. M. & Hurley, J. P. 1999. Assessment of grazing by the freshwater copepod Diaptomus minutus using carotenoid pigments: a caution. Journal of Plankton Research, 21, 127–145.
doi:10.1093/plankt/21.1.127

Directive, 2000. Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities, L 327, 1–72.

Eilers, J. M., Kann, J., Cornett, J., Moser, K. & St. Amand, A. 2004. Paleolimnological evidence of change in a shallow, hypereutrophic lake: Upper Klamath Lake, Oregon, USA. Hydrobiologia, 520, 7–18.
doi:10.1023/B:HYDR.0000027718.95901.ae

Engstrom, D. R., Schottler, S. P., Leavitt, P. R. & Havens, K. E. 2006. A reevaluation of the cultural eutrophication of Lake Okeechobee using multiproxy sediment records. Ecological Applications, 16, 1194–1206.
doi:10.1890/1051-0761(2006)016[1194:AROTCE]2.0.CO;2

Fietz, S., Sturm, M. & Nicklisch, A. 2005. Flux of lipophilic photosynthetic pigments to the surface sediments of Lake Baikal. Global and Planetary Change, 46, 29–44.
doi:10.1016/j.gloplacha.2004.11.004

Fietz, S., Nicklisch, A. & Oberhansli, H. 2007. Phytoplankton response to climate changes in Lake Baikal during the Holocene and Kazantsevo Interglacials assessed from sedimentary pigments. Journal of Paleolimnology, 37, 177–203.
doi:10.1007/s10933-006-9012-y

Greisberger, S. & Teubner, K. 2007. Does pigment composition reflect phytoplankton community structure in differing temperature and light conditions in a deep alpine lake? An approach using HPLC and delayed fluorescence techniques. Journal of Phycology, 43, 1108–1119.
doi:10.1111/j.1529-8817.2007.00404.x

Haberman, J., Nõges, P., Nõges, T., Pihu, E., Kangur, K., Kangur, A. & Kisand, V. 1998. Characterization of Lake Võrtsjärv. Limnologica, 28, 3–11.

Håkanson, L. & Jansson, M. 1983. Principles of Lake Sedimentology. Springer-Verlag, Berlin, 315 pp.

Hall, R. I., Leavitt, P. R., Quinlan, R., Dixit, A. S. & Smol, J. P. 1999. Effects of agriculture, urbanisation, and climate on water quality in the northern Great Plains. Limnology and Oceanography, 44, 739–756.
doi:10.4319/lo.1999.44.3_part_2.0739

Heinsalu, A., Luup, H., Alliksaar, T., Nõges, P. & Nõges, T. 2008. Water level changes in a large shallow lake as reflected by the plankton : periphyton-ratio of sedimentary diatoms. Hydrobiologia, 599, 23–30.
doi:10.1007/s10750-007-9206-y

Heiri, O., Lotter, A. F. & Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.
doi:10.1023/A:1008119611481

Hurley, J. P. & Armstrong, D. E. 1990. Fluxes and trans­for­mations of aquatic pigments in lake Mendota, Wisconsin. Limnology and Oceanography, 35, 384–398.
doi:10.4319/lo.1990.35.2.0384

Jaani, A. 1973. Hüdroloogia [Hydrology]. In Võrtsjärv [Lake Võrtsjärv] (Timm, T., ed.), pp. 37–60. Valgus, Tallinn [in Estonian].

Järvet, A. 2004. Hydrology of Lake Võrtsjärv. In Lake Võrtsjärv (Haberman, J., Pihu, E. & Raukas, A., eds), pp. 105–139. Estonian Encyclopaedia Publishers, Tallinn.

Jeffrey, S. W., Mantoura, R. F. C. & Bjørnland, T. 1997. Data for the identification of 47 key phytoplankton pigments. In Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods (Jeffrey, S. W., Mantoura, R. F. C. & Wright, S. W., eds), pp. 449–559. UNESCO Publishing, Paris.

Leavitt, P. R. 1993. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. Journal of Paleolimnology, 9, 109–127.
doi:10.1007/BF00677513

Leavitt, P. R. & Carpenter, S. R. 1989. Effects of sediment mixing and benthic algal production on fossil pigment stratigraphies. Journal of Paleolimnology, 2, 147–158.
doi:10.1007/BF00177044

Leavitt, P. R. & Carpenter, S. R. 1990a. Aphotic pigment degradation in the hypolimnion: implications for sedi­men­tation studies and paleolimnology. Limnology and Oceanography, 35, 520–534.
doi:10.4319/lo.1990.35.2.0520

Leavitt, P. R. & Carpenter, S. R. 1990b. Regulation of pigment sedimentation by photooxidation and herbivore grazing. Canadian Journal of Fisheries and Aquatic Sciences, 47, 1166–1176.
doi:10.1139/f90-136

Leavitt, P. R. & Hodgson, D. A. 2001. Sedimentary pigments. In Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators (Smol, J. P., Birks, H. J. B. & Last, W. M., eds), pp. 295–325. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Leeben, A., Tõnno, I., Freiberg, R., Lepane, V., Bonningues, N., Makarõtševa, N., Heinsalu, A. & Alliksaar, T. 2008. History of anthropogenically mediated eutrophication of Lake Peipsi as revealed by the stratigraphy of fossil pigments and molecular size fractions of pore-water dissolved organic matter. Hydrobiologia, 599, 49–58.
doi:10.1007/s10750-007-9199-6

Louda, J. W., Liu, L. & Baker, E. W. 2002. Senescence- and death-related alteration of chlorophylls and carotenoids in marine phytoplankton. Organic Geochemistry, 33, 1635–1653.
doi:10.1016/S0146-6380(02)00106-7

Mantoura, R. F. C. & Llewellyn, C. A. 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromato­graphy. Analytica Chimica Acta, 151, 297–314.
doi:10.1016/S0003-2670(00)80092-6

McGowan, S., Leavitt, P. R., Hall, R. I., Anderson, J., Jeppesen, E. & Odgaard, B. V. 2005. Controls of algal abundance and community composition during ecosystem state change. Ecology, 86, 2200–2211.
doi:10.1890/04-1029

Morales, F., Abadia, A. & Abadia, J. 1990. Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.). Plant Physiology, 94, 607–613.
doi:10.1104/pp.94.2.607

Nõges, P. & Laugaste, R. 1998. Seasonal and long-term changes in phytoplankton of lake Võrtsjärv. Limnologica, 28, 21–28.

Nõges, P., Tuvikene, L., Nõges, T. & Kisand, A. 1999. Primary production, sedimentation and resuspension in large shallow Lake Võrtsjärv. Aquatic Sciences, 61, 168–182.

Nõges, P., Laugaste, R. & Nõges, T. 2004. Phytoplankton. In Lake Võrtsjärv (Haberman, J., Pihu, E. & Raukas, A., eds), pp. 217–232. Estonian Encyclopaedia Publishers, Tallinn.

Patoine, A. & Leavitt, P. R. 2006. Century-long synchrony of fossil algae in a chain of Canadian prairie lakes. Ecology, 87, 1710–1721.
doi:10.1890/0012-9658(2006)87[1710:CSOFAI]2.0.CO;2

Pork, M. & Kõvask, V. 1973. Vetikad [Algae]. In Võrtsjärv [Lake Võrtsjärv] (Timm, T., ed.), pp. 95–99. Valgus, Tallinn [in Estonian].

Raukas, A. 1995. Estonian Nature. Valgus, Estonian Encyclopaedia Publishers, Tallinn, 608 pp.

Raukas, A. & Tavast, E. 2002. The Holocene sedimentation history of Lake Võrtsjärv, central Estonia. Geological Quarterly, 46, 199–206.

Reinart, A. & Nõges, P. 2004. Light conditions in Lake Võrtsjärv. In Lake Võrtsjärv (Haberman, J., Pihu, E. & Raukas, A., eds), pp. 141–149. Estonian Encyclopaedia Publishers, Tallinn.

Reuss, N. & Conley, D. J. 2005. Effects of sediment storage conditions on pigment analyses. Limnology and Oceano­graphy Methods, 3, 477–487.
doi:10.4319/lom.2005.3.477

Reuss, N., Conley, D. J. & Bianchi, T. S. 2005. Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries. Marine Chemistry, 95, 283–302.
doi:10.1016/j.marchem.2004.10.002

Reynolds, C. S. 2006. The Ecology of Phytoplankton. Cambridge University Press, New York, 552 pp.
doi:10.1017/CBO9780511542145

Roderick, L., Oliver, L. & Ganf, G. G. 2000. Freshwater blooms. In The Ecology of Cyanobacteria. Their Diversity in Time and Space (Whitton, B. A. & Potts, M., eds), pp. 149–194. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Scheffer, M. 1998. Ecology of Shallow Lakes. Chapman & Hall, London, 357 pp.

Soma, Y., Tani, Y., Soma, M., Mitake, H., Kurihara, R., Hashomoto, S., Watanabe, T. & Nakamura, T. 2007. Sedimentary steryl chlorin esters (SCEs) and other photosynthetic pigments as indicators of paleo­limno­logical change over the last 28,000 years from the Buguldeika Saddle of Lake Baikal. Journal of Paleolimnology, 37, 163–175.
doi:10.1007/s10933-006-9011-z

Sommer, U. 1984. Sedimentation of principal phytoplankton species in Lake Constance. Journal of Plankton Research, 6, 1–14.
doi:10.1093/plankt/6.1.1

Stoermer, E. F. & Smol, J. P. 1999. The Diatoms. Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, 469 pp.

Torsten, J., Reimund, G. & Wilhelma, C. 2001. Unusual pH-dependence of diadinoxanthin de-epoxidase activation causes chlororespiratory induced accumulation of diatoxanthin in the diatom Phaeodactylum tricornutum. Journal of Plant Physiology, 158, 383–390.
doi:10.1078/0176-1617-00288

Walsby, A. E. & McAllister, G. K. 1987. Buoyancy regulation by Microcystis in Lake Okaro. New Zealand Journal of Marine and Freshwater Research, 21, 521–524.
doi:10.1080/00288330.1987.9516249

Zimba, P. V. 1995. Epiphytic algal biomass of the littoral zone, Lake Okeechobee, Florida (USA). Archiv fuer Hydrobiologie, Advances in Limnology, 45, 233–240.
Back to Issue