The Vaivara Deformation Zone (VDZ) in northeastern Estonia was studied with ground-penetrating radar (GPR). While the typical Paleozoic carbonate plateau in northern Estonia is characterized by a subhorizontal continuous reflection pattern in GPR images, the VDZ, located south of the erosional bedrock escarpment, known as the Baltic Klint, frequently contains deformed and tilted limestone blocks, thrusts, and folds. We categorize the structural features seen in the GPR images according to deformation intensity and show their areal distribution. In addition to the VDZ, bedrock segments are deformed in Tõrvajõe village, the Pähklimäed Hills, and Narva town, whereas the distribution and nature of deformations hint at a glaciotectonic origin. The study confirms that GPR is a suitable tool for discovering and interpreting bedrock structures. Auxiliary geological and geophysical techniques are required for outlining of bedrock blocks.
Aber, J. S. and Ber, A. 2007. Glaciotectonism. Developments in Quaternary Science Series, Vol. 6. Elsevier, Amsterdam.
Bakker, M. A. J. and van der Meer, J. J. M. 2003. Structure of a Pleistocene push moraine revealed by GPR: the eastern Veluwe Ridge, The Netherlands. Geological Society, London, Special Publications, 211, 143–151.
https://doi.org/10.1144/GSL.SP.2001.211.01.12
Brandes, C. and Le Heron, D. P. 2010. The glaciotectonic deformation of Quaternary sediments by fault-propagation folding. Proceedings of the Geologists’ Association, 121, 270–280.
https://doi.org/10.1016/j.pgeola.2010.03.001
Busby, J. P. and Merritt, J. W. 1999. Quaternary deformation mapping with ground penetrating radar. Journal of Applied Geophysics, 41(1), 75–91.
https://doi.org/10.1016/S0926-9851(98)00050-0
Ehlers, J. and Gibbard, P. L. 2003. Extent and chronology of glaciations. Quaternary Science Reviews, 22, 1561–1568.
https://doi.org/10.1016/S0277-3791(03)00130-6
Elkarmoty, M., Tinti, F., Kasmaeeyazdi, S., Bonduà, S. and Bruno, R. 2018. 3D modeling of discontinuities using GPR in a commercial size ornamental limestone block. Construction and Building Materials, 166, 81–86.
https://doi.org/10.1016/j.conbuildmat.2018.01.091
Fitzsimons, S. and Howarth, J. 2020. Development of push moraines in deeply frozen sediment adjacent to a cold-based glacier in the McMurdo Dry Valleys, Antarctica. Earth Surface Processes and Landforms, 45(3), 622–637.
https://doi.org/10.1002/esp.4759
Ingólfsson, Ó., Benediktsson, Í. Ö., Schomacker, A., Kjær, K. H., Brynjólfsson, S., Jónsson, S. A. et al. 2016. Glacial geological studies of surge-type glaciers in Iceland – Research status and future challenges. Earth-Science Reviews, 152, 37–69.
https://doi.org/10.1016/j.earscirev.2015.11.008
Jõeleht, A. and Plado, J. 2010. Architecture of the northeastern rim of the Kärdla impact crater, Estonia, based on ground-penetrating radar studies. In Large Meteorite Impacts and Planetary Evolution IV (Gibson, R. L. and Reimold, W. U., eds). The Geological Society of America Special Paper, 465, 133–140.
https://doi.org/10.1130/2010.2465(09)
Karukäpp, R. and Raukas, A. 1997. Deglaciation history. In Geology and Mineral Resources of Estonia (Raukas, A. and Teedumäe, A., eds). Estonian Academy Publishers, Tallinn, 263–267.
Liner, C. L. and Liner, J. L. 1995. Ground-penetrating radar: a near-face experience from Washington County, Arkansas. The Leading Edge, 14(1), 17–21.
https://doi.org/10.1190/1.1437057
Lobanov, J. N. 1976. О природе дислокаций Дудергофских высот в окрестностях Ленинграда (The character of deformation in Dudergof Heights near Leningrad). Гео- тектоника, 6, 89–98 (in Russian).
Meidla, T. 2014. Estonia – a Palaeozoic country. In Proceedings of the 4th Annual Meeting of IGCP 591, Estonia, 10–19 June 2014. Abstracts and Field Guide(Bauert, H., Hints, O., Meidla, T. and Männik, P., eds.). University of Tartu, Tartu, 111–113.
Møller, I. and Jakobsen, P. R. 2002. Sandy till characterized by ground-penetrating radar. In Proceedings of the Ninth International Conference on Ground Penetrating Radar, Santa Barbara, CA, USA, 29 April–2 May 2002 (Koppenjan, S. and Lee, H., eds.). SPIE, 4758, 308–312.
Mustasaar, M., Plado, J. and Jõeleht, A. 2011. Determination of electromagnetic wave velocity in horizontally layered sedimentary target: a ground-penetrating radar study from Silurian limestones, Estonia. Acta Geophysica, 60(2), 357–370.
https://doi.org/10.2478/s11600-011-0068-3
Overgaard, T. and Jakobsen, P. R. 2001. Mapping of glaciotectonic deformation in an ice marginal environment with ground penetrating radar. Journal of Applied Geophysics, 47(3–4), 191–197.
https://doi.org/10.1016/S0926-9851(01)00064-7
Pasanen, A. 2009. Radar stratigraphy of the glaciotectonically deformed deposits in the Isoniemi area, Haukipudas, Finland. Bulletin of the Geological Society of Finland, 81(1), 39–51.
Pipan, M., Baradello, L., Forte, E. and Prizzon, A. 2000. GPR study of bedding planes, fractures, and cavities in limestone. In Proceedings of the Eighth International Conference on Ground Penetrating Radar (Noon, D. A., Stickley, G. F. and Longstaff, D., eds). SPIE, 4084, 682–687.
https://doi.org/10.1117/12.383499
Plado, J. and Davydov, I. 2019. Ground-penetrating radar studies in Narva at Tuleviku 9 and neighboring cadastral units. Study Report. Department of Geology, University of Tartu (in Estonian).
Plado, J., Preeden, U., Jõeleht, A., Pesonen, L. J. and Mertanen, S. 2016. Palaeomagnetism of Middle Ordovician carbonate sequence, Vaivara Sinimäed area, northeast Estonia, Baltica. Acta Geophysica, 64(5), 1391–1411.
https://doi.org/10.1515/acgeo-2016-0066
Puura, V. and Vaher, R. 1997. Deep structure. In Geology and Mineral Resources of Estonia (Raukas, A. and Teedumäe, A., eds). Estonian Academy Publishers, Tallinn, 163.
Rattas, M. and Kalm, V. 2004. Glaciotectonic deformation pattern in Estonia. Geological Quarterly, 48(1), 15–22.
Raukas, A. 1995. Estonia – a land of big boulders and rafts. Questiones Geographicae, Special issue, 4, 247–253.
Shihab, S., Al-Nuaimy, W. and Eriksen, A. 2004. Radius estimation for subsurface cylindrical objects detected by ground penetrating radar. In Proceedings of the Tenth International Conference on Ground Penetrating Radar, Delft, The Netherlands, 21–24 June 2004 (Slob, E. C., Yarovoy, A. G. and Rhebergen, J. B., eds). IEEE, 319–322.
Sibul, I., Plado, J. and Jõeleht, A. 2017. Ground-penetrating radar and electrical resistivity tomography for mapping bedrock topography and fracture zones: a case study in Viru-Nigula, NE Estonia. Estonian Journal of Earth Sciences, 66(3), 142–151.
https://doi.org/10.3176/earth.2017.11
Sigurdsson, T. and Overgaard, T. 1998. Application of GPR for 3-D visualization of geological and structural variation in a limestone formation. Journal of Applied Geophysics, 40(1–3), 29–36.
https://doi.org/10.1016/S0926-9851(98)00015-9
Suuroja, K. and Ploom, K. 2016. Vaivara Sinimägede ja dislokatsioonide vööndi tekkest (On the formation of Vaivara Sinimäed and dislocation zone). Bulletin of the Geological Survey of Estonia, 12, 37–56 (in Estonian).
Suuroja, K., Mardim, T., Ploom, K., All, T., Otsmaa, M. and Kõiv, M. 2009a. Eesti geoloogilise baaskaardi Narva (6534) leht. Seletuskiri (The explanatory note to the geological maps of Narva (6534) sheet). Geological Survey of Estonia, Tallinn (in Estonian).
Suuroja, K., Mardim, T., Ploom, K., All, T., Kõiv, M. and Otsmaa, M. 2009b. Eesti geoloogilise baaskaardi Sillamäe (6533) leht. Seletuskiri (The explanatory note to the geological maps of Sillamäe (6533) sheet). Geological Survey of Estonia, Tallinn (in Estonian).
Tuuling, I. and Flodén, T. 2016. The Baltic Klint beneath the central Baltic Sea and its comparison with the North Estonian Klint. Geomorphology, 263, 1–18.
https://doi.org/10.1016/j.geomorph.2016.03.030
Vaher, R., Miidel, A. and Raukas, A. 2013. Structure and origin of the Vaivara Sinimäed hill range, Northeast Estonia. Estonian Journal of Earth Sciences, 62(3), 160–170.
https://doi.org/10.3176/earth.2013.13
Volin, A. 1974. Диапировые структуры окрестностей Ленинграда (Diapiric structures around Leningrad). Природная обстановка и фауна прошлого, 8, 142–150 (in Russian).
Zajc, M., Celarc, B. and Gosar, A. 2015. Structural–geological and karst feature investigations of the limestone–flysch thrust-fault contact using low-frequency ground penetrating radar (Adria–Dinarides thrust zone, SW Slovenia). Environmental Earth Sciences, 73, 8237–8249.
https://doi.org/10.1007/s12665-014-3987-x