ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Late Pleistocene to Middle Holocene record of sedimentation and carbonate content in the Zervynos paleolake-dune complex, Lithuania; pp. 214–229
PDF | https://doi.org/10.3176/earth.2022.15

Authors
Liudas Daumantas, Petras Šinkūnas, Eugenija Rudnickaitė, Nikita Dobrotin, Dalia Kisielienė, Andrej Spiridonov
Abstract

The Late Pleistocene to the Holocene is a time interval that covers the climate transition from a cold to a warm interglacial regime. In the Baltic region, many studies have focused on estimating environmental responses to climatic forcing using palynological and stratigraphic proxies of glacial and periglacial settings. Herein we describe the mixed lacustrine-aeolian succession of the Zervynos-2 section (south-eastern Lithuania), located in the north-eastern part of the European Sand Belt. The succession and the sedimentation styles were characterized by granulometric parameters, structural features, dolomite/calcite ratio, and paleobotanical macro-remains. Our analyses revealed that the Zervynos-2 paleolake formed on the sandur (outwash) plain during the final stage of the Pleistocene. The onset of lake sedimentation was caused by sudden submergence of a sandbody-constrained paleovalley. Carbonate ratios and macro-remains from the lower gyttja material showed the presence of substantial millennial-scale oscillations, which suggests a delayed response to the isotopically derived paleotemperatures. The transition to the fast sand sedimentation started approximately in the Middle Holocene and is interpreted here as being caused by warming and drying of the climate in the Baltic region. The upper Holocene portion of the section represents the transition to exclusively aeolian sedimentation with lower accumulation rates that are likely related to a long-term cooling trend. The obtained results support the conjecture that there is a direct but delayed positive correlation between dolomite and calcite ratios in lake sediments and the climatic signal in the Greenland GISP2 record.

References

Alley, R. B. 2000. The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews19(1–5), 213–226.
https://doi.org/10.1016/S0277-3791(99)00062-1

Baltrūnas, V., Karmaza, B., Molodkov, A., Šinkūnas, P., Švedas, K. and Zinkutė, R. 2010. Structure, formation and geo­chro­nology of the late Pleistocene and Holocene cover deposits in South-Eastern Lithuania. Sedimentary Geology231(3–4), 85–97.
https://doi.org/10.1016/j.sedgeo.2010.08.007

Berggren, G. 1969. Atlas of Seeds and Small Fruits of Northwest-European Plant Species with Morphological Descriptions. Part 2, Cyperaceae. Berlingska Boktryckeriet, Lund.

Berggren, G. 1981. Atlas of Seeds and Small Fruits of Northwest-European Plant Species with Morphological Descriptions. Part 3, Salicaceae – Cruciferae. Berlings, Arlöv.

Borzenkova, I., Zorita, E., Borisova, O., Kalniņa, L., Kisielienė, D., Koff, T. et al. 2015. Climate change during the Holocene (past 12,000 years). In Second Assessment of Climate Change for the Baltic Sea Basin. Springer, Cham.
https://doi.org/10.1007/978-3-319-16006-1_2

Blaauw, M. 2018. rbacon. GitHub repository: GitHub. Retrieved from 
https://github.com/cran/rbacon/commit/d90db914c28fa42772f1110bf7b990a7f94fa868 (accessed 2022-11-26).

Blaauw, M., Christen, J. A. and Lopez, M. A. A. 2021. rbacon: Age-Depth modelling using Bayesian statistics
https://cran.r-project.org/web/packages/rbacon/index.html (accessed 2022-11-26).

Blažauskas, N., Jurgaitis, A. and Šinkūnas, P. 2007. Patterns of Late Pleistocene proglacial fluvial sedimentation in the SE Lithuanian Plain. Sedimentary Geology193(1–4), 193–201.
https://doi.org/10.1016/j.sedgeo.2005.06.015

Blott, S. J. and Pye, K. 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms26(11), 1237–1248.
https://doi.org/10.1002/esp.261

Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., DeMenocal, P. et al. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science278(5341), 1257–1266.
https://doi.org/10.1126/science.278.5341.1257

Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W. et al. 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science294(5549), 2130–2136.
https://doi.org/10.1126/science.1065680

Broecker, W. S., Denton, G. H., Edwards, R. L., Cheng, H., Alley, R. B. and Putnam, A. E. 2010. Putting the Younger Dryas cold event into context. Quaternary Science Reviews29(9), 1078–1081.
https://doi.org/10.1016/j.quascirev.2010.02.019

Cappers, R. T. J., Bekker, R. M. and Jans, J. E. A. 2006. Digital Seed Atlas of the Netherlands. Barkhuis Publishing & Groningen University Library, Groningen.

Catuneanu, O. 2006. Principles of Sequence Stratigraphy. Elsevier, Amsterdam.

Clemmensen, L. B., Pye, K., Murray, A. and Heinemeier, J. 2001. Sedimentology, stratigraphy and landscape evolution of a Holocene coastal dune system, Lodbjerg, NW Jutland, Denmark. Sedimentology48, 3–27.
https://doi.org/10.1046/j.1365-3091.2001.00345.x

Conwy Valley Systems Limited. PETROG. Trask Sorting. Retrieved from https://ws2.petrog.com/articles/trask.html (accessed 2022-06-16).

Cuffey, K. M. and Clow, G. D. 1997. Temperature, accumu­lation, and ice sheet elevation in central Greenland through the last deglacial transition. Journal of Geophysical Research: Oceans102(C12), 26383–26396.
https://doi.org/10.1029/96JC03981

Daumantas, L., Balakauskas, L. and Spiridonov, A. 2020. Machine learning reveals the role of the landscape in the dynamics of human settlement rules between the Palaeolithic and Iron Ages in Lithuania. Quaternary International565, 109–124.
https://doi.org/10.1016/j.quaint.2020.09.004

Donges, J. F., Donner, R. V., Marwan, N., Breitenbach, S. F. M., Rehfeld, K. and Kurths, J. 2015. Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns. Climate of the Past11(5), 709–741.
https://doi.org/10.5194/cp-11-709-2015

Druzhinina, O., Kublitskiy, J., Stančikaitė, M., Nazarova, L., Syrykh, L., Gedminienė, L. et al. 2020. The Late Pleistocene–Early Holocene palaeoenvironmental evolution in the SE Baltic region: a new approach based on chironomid, geochemical and isotopic data from Kamyshovoye Lake, Russia. Boreas49, 544–561.
https://doi.org/10.1111/bor.12438

Easterbrook, D. J. 2016. Temperature fluctuations in Greenland and the Arctic. In Evidence-Based Climate Science. 2nd ed. (Easterbrook, D. J. ed.). Elsevier, 137–160.
https://doi.org/10.1016/B978-0-12-804588-6.00008-2

Gaglioti, B. V., Mann, D. H., Groves, P., Kunz, M. L., Farquharson, L. M., Reanier, R. E. et al. 2018. Aeolian stra­tigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska. Quaternary Science Reviews182, 175–190.
https://doi.org/10.1016/j.quascirev.2018.01.002

Grigas, A. 1986. Lietuvos augalų vaisiai ir sėklos (Fruits and seeds of Lithuanian plants).  Mokslas, Vilnius (in Lithuanian).

Grimm, E. C. 2007. Tilia Version 1.0.1. Illinois State Museum, Research and Collections Center, Springfield, IL.

Guobytė, R. and Satkūnas, J. 2011. Pleistocene glaciations in Lithuania. In Quaternary Glaciations – Extent and Chronology. A Closer Look. Developments in Quaternary Science (Ehlers, J., Gibbard, P. L. and Hughes, P. D., eds). Elsevier, Amsterdam, 15, 231–246.
https://doi.org/10.1016/B978-0-444-53447-7.00019-2

Haslett, J. and Parnell, A. C. 2008. A simple monotone process with application to radiocarbon-dated depth chronologies. Journal of the Royal Statistical Society. Series C: Applied Statistics57(4), 399–418.
https://doi.org/10.1111/j.1467-9876.2008.00623.x

Ivanovic, R. F., Gregoire, L. J., Wickert, A. D., Valdes, P. J. and Burke, A. 2017. Collapse of the North American ice saddle 14,500 years ago caused widespread cooling and reduced ocean overturning circulation. Geophysical Research Letters44(1), 383–392.
https://doi.org/10.1002/2016GL071849

Kabailienė, M., Vaikutienė, G., Damušytė, A. and Rudnickaitė, E. 2009. Post–Glacial stratigraphy and palaeoenvironment of the northern part of the Curonian Spit, Western Lithuania. Quaternary International207, 69–79.
https://doi.org/10.1016/j.quaint.2008.12.007

Kalińska-Nartiša, E., Thiel, C., Nartišs, M., Buylaert, J.-P. and Murray, A. S. 2015. Age and sedimentary record of inland eolian sediments in Lithuania, NE European Sand Belt. Quaternary Research84(1), 82–95.
https://doi.org/10.1016/j.yqres.2015.04.001

Kasse, C. 2002. Sandy aeolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Progress in Physical Geography26, 507–532.
https://doi.org/10.1191/0309133302pp350ra

Keigwin, L. D., Jones, G. A., Lehman, S. J. and Boyle, E. A. 1991. Deglacial meltwater discharge, North Atlantic deep circulation, and abrupt climate change. Journal of Geo­physical Research: Oceans96(C-9), 16811–16826.
https://doi.org/10.1029/91JC01624

Koch, P. L. and Barnosky, A. D. 2006. Late Quaternary ex­tinctions: state of the debate. Annual Review of Ecology, Evolution, and Systematics37, 215–250.
https://doi.org/10.1146/annurev.ecolsys.34.011802.132415

Łapcik, P., Ninard, K. and Uchman, A. 2021. Extra-large grains in Late Glacial–Early Holocene aeolian inland dune deposits of cold climate, European Sand Belt, Poland: an evidence of hurricane-speed frontal winds. Sedimentary Geology415, 105847.
https://doi.org/10.1016/j.sedgeo.2020.105847

Liaw, A. and Wiener, M. 2002. Classification and regression by randomForest. R News2(3), 18–22.

Loehle, C. and Singer, S. F. 2010. Holocene temperature records show millennial-scale periodicity. Canadian Journal of Earth Sciences47(10), 1327–1336.
https://doi.org/10.1139/E10-050

Lungershausen, U., Larsen, A., Bork, H.-R. and Duttmann, R. 2018. Anthropogenic influence on rates of aeolian dune activity within the northern European Sand Belt and socio-economic feedbacks over the last ~2500 years. The Holocene28(1), 84–103.
https://doi.org/10.1177/0959683617715693

Marcott, S. A., Shakun, J. D., Clark, P. U. and Mix, A. C. 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science339(6124), 1198–1201.
https://doi.org/10.1126/science.1228026

Matthews, J. A. and Seppälä, M. 2014. Holocene environmental change in subarctic aeolian dune fields: The chronology of sand dune re-activation events in relation to forest fires, palaeosol development and climatic variations in Finnish Lapland. The Holocene24(2), 149–164.
https://doi.org/10.1177/0959683613515733

Miall, A. D. 2010. The Geology of Stratigraphic Sequences. 2nd ed. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-05027-5

Molodkov, A. and Bitinas, A. 2006. Sedimentary record and luminescence chronology of the Lateglacial and Holocene aeolian sediments in Lithuania. Boreas35, 244–254.
https://doi.org/10.1080/03009480600584915

Norris, S., Garcia-Castellanos, D., Jansen, J. D., Carling, P. A., Margold, M., Woywitka, R. J. and Froese, D. G. 2021. Catastrophic drainage from the northwestern outlet of glacial Lake Agassiz during the Younger Dryas. Geophysical Research Letters48(15), e2021GL093919.
https://doi.org/10.1029/2021GL093919

Pierik, H. J., van Lanen, R. J., Gouw-Bouman, M. T., Groenewoudt, B. J., Wallinga, J. and Hoek, W. Z. 2018. Controls on late-Holocene drift-sand dynamics: the dominant role of human pressure in the Netherlands. The Holocene28(9), 1361–1381.
https://doi.org/10.1177/0959683618777052

Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B. et al. 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews106, 14–28.
https://doi.org/10.1016/j.quascirev.2014.09.007

Rudnickaite, E. 1980. Методика определения карбонатов в разновозрастных моренах плейстоцена (The technique of the determination of carbonates in various age Pleistocene tills). In Полевые и лабораторные методы исследования ледниковых отложенийТезисы докладов межведом­ственногосовещания (Methods of the field and laboratory investigations of glacial deposits. Abstracts of the symposium). Academy of Sciences of the Estonian SSR, Tallinn, 121 (in Russian)

Rudnickaitė, E. 2007. Reconstruction of palaeogeography of Pleistocene interglacials according carbonates content. In Proceedings of the XVII INQUA Congress “The Tropics: Heat Engine of the Quaternary”, Cairns, Australia, 27 July–3 August 2007. Abstracts / Quaternary International, 167– 168, Suppl. 356.
https://doi.org/10.1016/j.quaint.2007.05.004

Rudnickaitė, E. 2016. Carbonates in the Lithuanian Quaternary sediments as lithostratigraphic criterion and indicator of palaeoclimatic conditions. Summary of doctoral dissertation. Vilnius University, Vilnius. 

Sanko, A., Gaigalas, A.-J., Rudnickaitė, E. and Melešytė, M. 2008. Holocene malacofauna in calcareous deposits of Dūkšta site near Maišiagala in Lithuania. Geologija50(4), 290–298.
https://doi.org/10.2478/v10056-008-0054-x

Shao, Y. and Lu, H. 2000. A simple expression for wind erosion threshold friction velocity. Journal of Geophysical Research: Atmospheres105, 22437–22443.
https://doi.org/10.1029/2000JD900304

Spiridonov, A., Balakauskas, L., Stankevič, R., Kluczynska, G., Gedminienė, L. and Stančikaitė, M. 2019. Holocene veg­etation patterns in southern Lithuania indicate astronomical forcing on the millennial and centennial time scales. Scientific Reports9, 14711.
https://doi.org/10.1038/s41598-019-51321-7

Spiridonov, A., Vaikutienė, G., Stankevič, R., Druzhinina, O., Šeirienė, V., Subetto, D. et al. 2021. Response of freshwater diatoms to cold events in the Late Pleistocene and Early Holocene (SE Baltic region). Quaternary International589, 112–123.
https://doi.org/10.1016/j.quaint.2021.02.017

Stančikaitė, M., Gedminienė, L., Edvardsson, J., Stoffel, M., Corona, C., Gryguc, G. et al. 2019. Holocene vegetation and hydroclimatic dynamics in SE Lithuania – Implications from a multi-proxy study of the Čepkeliai bog. Quaternary International501(A), 219–239.
https://doi.org/10.1016/j.quaint.2017.08.039

Stančikaitė, M., Kisielienė, D., Moe, D. and Vaikutienė, G. 2009. Lateglacial and early Holocene environmental changes in north­eastern Lithuania. Quaternary International207(1–2), 80–92.
https://doi.org/10.1016/j.quaint.2008.10.009

Snowball, I., Korhola, A., Briffa, K. R. and Koç, N. 2004. Holocene climate dynamics in Fennoscandia and the North Atlantic. In Past Climate Variability through Europe and Africa. Developments in Paleoenvironmental Research, Vol. 6 (Battarbee, R. W., Gasse, F. and Stickley, C. E., eds). Springer, Dordrecht, 465–494.
https://doi.org/10.1007/978-1-4020-2121-3_22

Teller, J. T., Leverington, D. W. and Mann, J. D. 2002. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews21(8–9), 879–887.
https://doi.org/10.1016/S0277-3791(01)00145-7

Tolksdorf, J. F. and Kaiser, K. 2012. Holocene aeolian dynamics in the European sand-belt as indicated by geochronological data. Boreas41(3), 408–421.
https://doi.org/10.1111/j.1502-3885.2012.00247.x

Veski, S., Seppä, H. and Ojala, A. E. K. 2004. Cold event at 8200 yr B.P. recorded in annually laminated lake sediments in eastern Europe. Geology32(8), 681–684.
https://doi.org/10.1130/G20683.1

Veski, S., Seppä, H., Stančikaitė, M., Zernitskaya, V., Reitalu, T., Gryguc, G. et al. 2015. Quantitative summer and winter temperature reconstructions from pollen and chironomid data between 15 and 8 ka BP in the Baltic–Belarus area. Quaternary International388, 4–11.
https://doi.org/10.1016/j.quaint.2014.10.059

White, D., Preece, R. C., Shchetnikov, A. A. and Dlussky, K. G. 2013. Late Glacial and Holocene environmental change reconstructed from floodplain and aeolian sediments near Burdukovo, lower Selenga River Valley (Lake Baikal region), Siberia. Quaternary International290–291, 68–81.
https://doi.org/10.1016/j.quaint.2012.11.007

Wolbach, W. S., Ballard, J. P., Mayewski, P. A., Parnell, A. C., Cahill, N., Adedeji, V. et al. 2018. Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ~12,800 years ago. 2. Lake, marine, and terrestrial sediments. The Journal of Geology126(2), 185–205.
https://doi.org/10.1086/695704

Woronko, B., Zieliński, P. and Sokołowski, R. J. 2015. Climate evolution during the Pleniglacial and Late Glacial as recorded in quartz grain morphoscopy of fluvial to aeolian successions of the European Sand Belt. Geologos21(2), 89–103.
https://doi.org/10.1515/logos-2015-0005

Xu, Z., Stevens, T., Yi, S., Mason, J. A. and Lu, H. 2018. Seesaw pattern in dust accumulation on the Chinese Loess Plateau forced by late glacial shifts in the East Asian monsoon. Geology46(10), 871–874.
https://doi.org/10.1130/G45105.1

Zeeberg, J. 1998. The European sand belt in Eastern Europe and comparison of Late Glacial dune orientation with GCM simulation results. Boreas27(2), 127–139.
https://doi.org/10.1111/j.1502-3885.1998.tb00873.x

Back to Issue