ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Timing of ductile shearing within the Drūkšiai–Polotsk Deformation Zone, Lithuania: a U–Pb titanite age; pp. 256–262
PDF | doi: 10.3176/earth.2010.4.02

Authors
Irma Vejelyte, Svetlana Bogdanova, Ekaterina Salnikova, Sonya Yakovleva, Alevtina Fedoseenko
Abstract
A U–Pb dating of titanite from an augen granitoid mylonite in the Drūkšiai–Polotsk Deformation Zone has yielded a concordant age of 1534 ± 9 Ma. This light brown titanite follows the foliation in the host rock and was obviously formed during retrogression from amphibolite to epidote-amphibolite facies and coeval mylonitization. Shear zones of the same age are known in southern and central Sweden and in NE Poland. These E–W trending deformation zones accommodate both mafic and granitoid intrusions and are probably related to an extensional period in the Mesoproterozoic evolution in the western part of the East European Craton prior to the 1.50–1.45 Ga Danopolonian orogeny.
References

Amelin, Y. V., Larin, A. M. & Tucker, R. D. 1997. Chronology of multiphase emplacement of the Salmi rapakivi granite-anorthosite complex, Baltic Shield: implications for magmatic evolution. Contributions to Mineralogy and Petrology, 127, 353–368.
doi:10.1007/s004100050285

Andersson, U. B., Neymark, L. A. & Billström, K. 2002. Petrogenesis of Mesoproterozoic (Subjotnian) rapakivi complexes of central Sweden: implications from U-Pb zircon ages, Nd, Sr and Pb isotopes. Transactions of the Royal Society of Edinburgh: Earth Sciences, 92, 201–228.

Ankudinov, S., Sadov, A. & Brio, H. 1994. Crustal structure of Baltic Countries on the basis of deep seismic sounding data. Proceedings of the Estonian Academy of Sciences, Geology, 43, 129–136 [in Russian, with English summary].

Bergman, S., Sjöström, H. & Höghdal, K. 2006. Transpressive shear related to arc magmatism: the Paleoproterozoic Storsjön-Edsbyn Deformation Zone, central Sweden. Tectonics, 25, 1–16.
doi:10.1029/2005TC001815

Bogdanova, S. V. 2008. The 1.50–1.45 Ga Danopolonian Orogeny: from accretion to collision? In 28th Nordic Geological Winter Meeting Abstract Volume (Wahl, N. A., ed.), pp. 134–135. Aalborg University.

Bogdanova, S. V., Page, L. M., Skridlaite, G. & Taran, L. N. 2001. Proterozoic tectonothermal history in the western part of the East European Craton: 40Ar/39Ar geo­chronological constraints. Tectonophysics, 339, 39–66.
doi:10.1016/S0040-1951(01)00033-6

EUROBRIDGE’95 seismic working group, Yliniemi, J., Tiira, T., Luosto, U., Komminaho, K., Giese, R., Motuza, G., Nasedkin, V., Jacyna, J., Šečkus, R., Grad, M., Czuba, W., Janik, T., Guterch, A., Lund, C. E. & Doody, J. J. 2001. EUROBRIDGE’95: deep seismic profiling within the East European Craton. Tectono­physics, 339, 154–175.

Garetsky, R. G., Apirubyte, R. A., Dankevich, I. V. et al. 1990. On horizontal displacements of large crustal blocks in the western part of East-European platform. Reports of the Academy of Sciences of the Ukrainian SSR,Series B, 6–8.

Garetsky, R. G., Karataev, G. I., Astapenko, V. N. & Dankevich, I. V. 2002. The Polotsk-Kurzeme fault belt. Doklady NAN Belarusi, 46, 85–89.

Hermansson, T., Stephens, M., Corfu, F., Andersson, J. & Page, L. 2007. Penetrative ductile deformation and amphibolite-facies metamorphism prior to 1851 Ma in the western part of the Svecofennian orogen, Fenno­scandian Shield. Precambrian Research, 153, 29–45.
doi:10.1016/j.precamres.2006.11.009

Högdahl, K. 2000. Late-Orogenic, Ductile Shear Zones and Protolith Ages in the Svecofennian Domain, Central Sweden. Doctoral thesis of Stockholm University, 82 pp.

Högdahl, K. & Sjöström, H. 2001. Evidence for 1.82 Ga transpressive shearing in a 1.85 Ga granitoid in central Sweden: implications for the regional evolution. Precambrian Research, 105, 37–56.
doi:10.1016/S0301-9268(00)00102-9

Johansson, L. & Johansson, Ǻ. 1993. U-Pb age of titanite in the Mylonite Zone, southwestern Sweden. GFF, 115, 1–7.

Korabliova, L. & Sliaupa, S. 2006. Relationship of the relief and potential fields of Lithuania and their influence on surface geodynamic processes. In Annual Report of the Lithuanian Geological Survey for 2005, pp. 52–54.

Krogh, T. E. 1973. A low-contamination method for hydro­thermal decomposition of zircon and extraction of U and Pb for isotopic age determination. Geochimica et Cosmochimica Acta, 37, 485–494.
doi:10.1016/0016-7037(73)90213-5

Ludwig, K. R. 1991. PbDat for MS-DOS, version 1.21 U.S. Geological Survey Open-File Report, 88–542, 35 pp.

Ludwig, K. R. 1999. ISOPLOT/Ex.Version 2.06. A geo­chronological toolkit for Microsoft Excel. Berkley Geochronology Center Special Publications, 1a, 1–49.

Marcinkevičius, V. & Laškovas, J. 2007. Geological structure of the Ignalina Nuclear Power Plant area. Geologija (Vilnius), 58, 16–24.

Motuza, G. 2005. Structure and formation of the crystalline crust in Lithuania. Mineral Society of Poland, Special Papers, 26, 69–79.

Pačėsa, A., Šliaupa, S. & Satkūnas, J. 2005. Recent earthquakes in the Baltic Region and seismic monitoring of Lithuania. Geologija (Vilnius), 50, 8–18.

Rimsa, A., Bogdanova, S., Skridlaite, G. & Bibikova, E. 2001. The Randamonys TTG-intrusion in Southern Lithuania: evidence of an 1.84 Ga Island arc. EGU XI, Strasbourg–France, 8 April. Journal of Conference Abstracts, 6, 1.

Skridlaitė, G. & Motuza, G. 2001. Precambrian domains in Lithuania: evidence of terrane tectonics. Tectonophysics, 339, 113–133.
doi:10.1016/S0040-1951(01)00035-X

Skridlaite, G., Wiszniewska, J. & Duchesne, J.-C. 2003. Ferro-potassic A-type granites and related rocks in NE Poland and S Lithuania: west of the East European Craton. Precambrian Research,124, 305–326.
doi:10.1016/S0301-9268(03)00090-1

Skridlaitė, G., Bogdanova, S. & Page, L. 2006. Meso­proterozoic events in eastern and central Lithuania as recorded by 40Ar/39Ar ages. Baltica, 19, 91–98.

Skridlaite, G., Whitehouse, M. & Rimša, A. 2007. Evidence for a pulse of 1. 45 Ga anorthosite–mangerite–charnockite–granite (AMCG) plutonism in Lithuania: implications for the Mesoproterozoic evolution of the East European Craton. Terra Nova, 19, 294–301.
doi:10.1111/j.1365-3121.2007.00748.x

Šliaupa, A. 1998. Neotectonic structures of Lithuania and adjacent territories. Litosfera, 2, 37–46.

Šliaupa, S. & Popov, M. 1998. Linkage between basement and neotectonic linear structures in Lithuania. Litosfera, 2, 23–36.

Šliaupa, S., Zakarevičius, A. & Stanionis, A. 2006. Strain and stress fields of the Ignalina NPP area from GPS data and thin-shell finite element modelling, NE Lithuania. Geologija (Vilnius), 56, 27–35.

Söderlund, P., Page, L. & Söderlund, U. 2008. 40Ar–39Ar biotite and hornblende geochronology from the Oskarshamn area, SE Sweden: discerning multiple Proterozoic tectonothermal events. Geological Magazine,145, 790–799.

Stacey, J. S. & Kramers, I. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26, 207–221.
doi:10.1016/0012-821X(75)90088-6

Steiger, R. H. & Jäger, E. 1976. Subcommission of Geo­chronology: convension of the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36, 359–362.
doi:10.1016/0012-821X(77)90060-7

Sundblad, K., Mansfeld, J., Motuza, G., Ahl, M. & Claesson, S. 1994. Geology, geochemistry and age of a Cu-Mo-bearing granite at Kabeliai, Southern Lithuania. Mineralogy and Petrology, 50, 43–57.
doi:10.1007/BF01160138

Torvela, T., Mänttäri, I. & Hermansson, T. 2008. Timing of deformation phases within the South Finland shear zone, SW Finland. Precambrian Research, 160, 277–297.
doi:10.1016/j.precamres.2007.08.002

Wiszniewska, J., Claesson, S., Stein, H., Vander Auwera, J. & Duchesne, J.-C. 2002. The north-eastern Polish anorthosite massifs: petrological, geochemical and isotopic evidence for a crustal derivation. Terra Nova, 14, 451–460.
doi:10.1046/j.1365-3121.2002.00443.x

Zakarevičius, A. & Stanionis, A. 2005. Research of horizontal movements of the Earth crust by applying the programme ANSYS. Geodezija ir kartografija, 31, 3–11 [in Lithuanian, with English summary].
Back to Issue