ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Modelling circulation in an ice-covered lake; pp. 298–309
PDF | doi: 10.3176/earth.2010.4.06

Authors
Timo Huttula, Merja Pulkkanen, Boris Arkhipov, Matti Leppäranta, Viacheslav Solbakov, Kunio Shirasawa, Kalevi Salonen
Abstract
In deep ice-covered lakes with temperatures below 4 °C the heat flux from the bottom sediment results in a horizontal density gradient and a consequent flow along the bottom slope. Measurements in Lake Pääjärvi, Finland, show a stable temperature field where a heat gain through the bottom and a heat loss through the ice nearly balance each other. The circulation is thermal with low velocities (less than 1.5 cm s–1). We used the 3D hydrodynamic Princeton Ocean Model as a tool to simulate the water circulation and the temperature distribution under the ice. The model forcing was based on field temperature measurements. The model simulations suggest that in midwinter the velocity field of the upper water layers is anticyclonic while that of deep layers is cyclonic. Comparison with current measurements at one site showed good agreement between the modelled and observed results. On the basis of the modelled results it is possible to better understand the distributions of some micro-organisms and the accumulation of oxygen depleted waters in the deepest part of the lake.
References

Adams, W. P. 1981. Snow and ice on lakes. In Handbook of Snow: Principles, Processes, Management and Use (Gray, D. M. & Male, D. H., eds), pp. 437–474. Pergamon, New York.

Arst, H., Erm, A., Herlevi, A., Kutser, T., Leppäranta, M., Reinart, A. & Virta, J. 2008. Optical properties of boreal lake waters in Finland and Estonia. Boreal Environment Research, 13, 133–158.

Baumert, H., Chapalain, G., Smaoui, H., McManus, J. P., Yagi, H., Regener, M., Sündermann, J. & Szilagy, B. 2000. Modelling and numerical simulation of turbulence, waves and suspended sediments for pre-operational use in coastal seas. Coastal Engineering, 41, 63–93.
doi:10.1016/S0378-3839(00)00027-2

Bengtsson, L. 1996. Mixing in ice-covered lakes. Hydro­biologia, 322, 91–97.
doi:10.1007/BF00031811

Blumberg, A. & Mellor, G. 1987. A description of the three-dimensional coastal ocean circulation model. In Three-Dimensional Coastal Ocean Models (Heaps, N., ed.), Coastal and Estuarine Sciences, 4, 1–16.

Cummins, P. F. & Foreman, M. G. G. 1998. A numerical study of circulation driven by mixing over a submarine bank. Deep Sea Research, 45, 745–769.
doi:10.1016/S0967-0637(97)00102-7

Emery, K. O. & Csanady, G. T. 1973. Surface circulation of lakes and nearly land-locked seas. Proceedings of the National Academy of Sciences of the United States of America, 70, 93–97.
doi:10.1073/pnas.70.1.93

Gill, A. E. 1982. Atmosphere-Ocean Dynamics. Academic Press, New York, 662 pp.

Jakkila, J. 2007. Ice Melting Season in Lake Pääjärvi. MSc thesis, Department of Physics, University of Helsinki, 86 pp.

Jakkila, J., Leppäranta, M., Kawamura, T., Shirasawa, K. & Salonen, K. 2009 Radiation transfer and heat budget during the melting season in Lake Pääjärvi. Aquatic Ecology, 43, 681–692.
doi:10.1007/s10452-009-9275-2

Kärkäs, E. 2000. The ice season of Lake Pääjärvi, southern Finland. Geophysica, 36, 85–94.

Leppäranta, M. 2009. Modelling of formation and decay of lake ice. In Impact of Climate Change on European Lakes (George, G., ed.), pp. 63–83. Springer-Verlag.
doi:10.1007/978-90-481-2945-4_5

Mellor, G. L. & Yamada, T. 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20, 851–875.
doi:10.1029/RG020i004p00851

Mellor, G. L., Ezer, T. & Oey, L.-Y. 1994. The pressure gradient conundrum of Sigma coordinate ocean models. Journal of Atmospheric and Oceanic Technology, 11, 1126–1134.
doi:10.1175/1520-0426(1994)011<1126:TPGCOS>2.0.CO;2

Mellor, G. L., Oey, L.-Y. & Ezer, T. 1998. Sigma coordinate pressure gradient errors and the seamount problem. Journal of Atmospheric and Oceanic Technology, 15, 1122–1131.
doi:10.1175/1520-0426(1998)015<1122:SCPGEA>2.0.CO;2

Mortimer, C. H. 1941. The exchange of dissolved substances between mud and water in lakes. The Journal of Ecology, 29, 280–329.
doi:10.2307/2256395

Mortimer, C. H. & Mackereth, F. J. H. 1958. Convection and its consequences in ice-covered lakes. Verhandlungen des Internationalen Verein Limnologie, 13, 923–932.

Petrov, M. P., Terzhevika, A. Yu., Zdorovennov, R. E. & Zdorovennova, G. E. 2006. The thermal structure of a shallow lake in early winter. Water Research, 33, 135–143.
doi:10.1134/S0097807806020035

SalonenK., LeppärantaM., ViljanenM. & Gulati, R. 2009. Perspectives in winter limnology: closing the annual cycle of freezing lakes. Aquatic Ecology, 43, 609–616.
doi:10.1007/s10452-009-9278-z

Schwab, D. J., O’Connor, W. P. & Mellor, G. L. 1995. On the net circulation in large stratified lakes. Journal of Physical Oceanography, 25, 1516–1520.
doi:10.1175/1520-0485(1995)025<1516:OTNCCI>2.0.CO;2

Shirasawa, K., Leppäranta, M., Kawamura, T., Ishikawa, M. & Takatsuka, T. 2006. Measurements and modelling of the water – ice heat flux in natural waters. In Proceedings of the 18th IAHR Ice Symposium, pp. 85–91. Sapporo, Japan.

Thanderz, L. 1973. Heat budget studies. In Dynamic Studies on Lake Velen (Falkenmark, M., ed.), pp. 51–78. Report 31, Swedish Natural Science Research Council.

Virta, H. 2001. Modelling Circulation in Lake Pääjärvi. MSc thesis, Department of Geophysics, University of Helsinki.

Back to Issue