ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
A model of the vertical distribution of suspended sediment in the bottom layer of a natural water body; pp. 238–245
PDF | doi: 10.3176/earth.2010.3.05

Authors
Aleksander Toompuu, Jaak Heinloo
Abstract
The paper suggests a stationary model of the vertical distribution of the concentration of suspended sediment in the bottom layer of a natural water body with a flat bottom. The model explains the concentration distribution, formed jointly by the settling of suspended particles and turbulent diffusion. The flow is assumed geostrophic above the bottom-influenced layer, while in the bottom layer the effect of turbulent diffusion by the large-scale turbulence constituent is assumed to dominate over the diffusion effect caused by the small-scale turbulence constituent. It is shown that for the characteristic diffusion length scale of the eddies much smaller than the height of the Ekman bottom boundary layer the model results in an analytic expression for the vertical distribution of the concentration of suspended sediment, which includes also the case with the presence of the lutocline. The model outcome is compared with the results of a laboratory experiment with sand-injected flume flow.
References

Belinsky, M., Rubin, H., Agnon, Y., Kit, E. & Atkinson, J. F. 2005. Characteristics of resuspension, settling and diffusion of particulate matter in water column. Environmental Fluid Mechanics, 5, 415–441.
doi:10.1007/s10652-004-7302-3

Coleman, N. L. 1986. Effects of suspended sediment on the open channel velocity distribution. Water Resources Research, 22, 1377–1384.
doi:10.1029/WR022i010p01377

E, X. & Hopfinger, E. J. 1989. Stratification by solid particle suspension. In Proceedings of the 3rd International Symposium on Stratified Flows, pp. 1–8. Caltech, Pasadena.

Gross, T. F. & Nowell, A. R. M. 1990. Turbulent suspension of sediments in deep sea. Philosophical Transactions of the Royal Society A, 331, 167–181.
doi:10.1098/rsta.1990.0063

Heinloo, J. 1984. Fenomenologicheskaya mekhanika turbulentnykh potokov [Phenomenological Mechanics of Turbulent Flows]. Valgus, Tallinn, 245 pp. [in Russian].

Heinloo, J. 1999. Mekhanika turbulentnosti [Turbulence Mechanics]. Estonian Academy of Sciences, Tallinn, 270 pp. [in Russian].

Heinloo, J. 2004. The formulation of turbulence mechanics. Physics Review E, 69, 056317.
doi:10.1103/PhysRevE.69.056317

Heinloo, J. 2006. Eddy-driven flows over varying bottom topography in natural water bodies. Proceedings of the Estonian Academy of Sciences, Physics, Mathematics, 55, 235–245.

Heinloo, J. 2008. The description of externally influenced turbulence accounting for a preferred orientation of eddy rotation. The European Physical Journal B, 62, 471–476.
doi:10.1140/epjb/e2008-00187-8

Heinloo, J. & Toompuu, A. 2004. Antarctic Circumpolar Current as a density-driven flow. Proceedings of the Estonian Academy of Sciences, Physics, Mathematics, 53, 252–265.

Heinloo, J. & Toompuu, A. 2006. Modeling a turbulence effect in formation of the Antarctic Circumpolar Current. Annales Geophysicae, 24, 3191–3196.
doi:10.5194/angeo-24-3191-2006

Heinloo, J. & Toompuu, A. 2007. Eddy-to-mean energy transfer in geophysical turbulent jet flows. Proceedings of the Estonian Academy of Sciences, Physics, Mathematics, 56, 283–294.

Heinloo, J. & Toompuu, A. 2008. Modelling turbulence effect in formation of zonal winds. The Open Atmospheric Science Journal, 2, 249–255.
doi:10.2174/1874282300802010249

Heinloo, J. & Toompuu, A. 2009. A model of average velocity in oscillating turbulent boundary layers. Journal of Hydraulic Research, 47, 676–680.
doi:10.3826/jhr.2009.3579

Heinloo, J. & Võsumaa, Ü. 1992. Rotationally anisotropic turbulence in the sea. Annales Geophysicae, 10, 708–715.

Huang, S., Sun, Z., Xu, D. & Xia, S. 2008. Vertical dis­tribution of sediment concentration. Journal of Zhejiang University-Science A, 9, 1560–1566.
doi:10.1631/jzus.A0720106

Kirby, R. 1986. Suspended Fine Cohesive Sediment in the Severn Estuary and Inner Bristol Channel. U.K. Report to United Kingdom Atomic Energy Authority under contract No: E/5A/CON/4042/1394. Ravensrodd Consultants Ltd., Taunton Somerset.

Kirby, R. 1992. Detection and transport of high concentration suspensions. In Proceedings of International Conference on the Pearl River Estuary in the Surrounding Area of Macao, Macao, 19–23 October 1992, pp. 67–84. Macao.

Kirby, R. & Parker, W. R. 1983. Distribution and behavior of fine sediment in the Severn Estuary and Inner Bristol Channel, U.K. Canadian Journal of Fisheries and Aquatic Sciences, 40, 83–95.

Kolmogorov, A. N. 1941. The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers. Doklady Akademii Nauk SSSR, 30, 376–387 [in Russian; reprinted in English: Proceedings of the Royal Society, London A, 1991, 434, 9–13].

Mehta, A. J. 1988. Laboratory studies on cohesive sediment deposition and erosion. In Physical Processes in Estuaries (Dronkers, J. & van Leussen, W., eds), pp. 427–445. Springer-Verlag, Berlin.

Mehta, A. J. & Srinivas, R. 1993. Observations on the entrainment of fluid mud by shear flow. In Nearshore and Estuarine Cohesive Sediment Transport, Coastal and Estuarine Studies, Vol. 42 (Mehta, A. J., ed.), pp. 224–246. AGU, Washington.

Michallett, H. & Mory, M. 2004. Modelling of sediment suspensions in oscillating grid turbulence. Fluid Dynamics Research, 35, 87–106.
doi:10.1016/j.fluiddyn.2004.04.004

Noh, Y. & Fernando, H. J. S. 1991. Dispersion of suspended particles in turbulent flow. Physics of Fluids A, 3, 1730–1740.
doi:10.1063/1.857952

Orton, P. M. & Kineke, G. C. 2001. Comparing calculated and observed vertical suspended-sediment distributions from a Hudson River turbidity maximum. Estuarine, Coastal and Shelf Science, 52, 401–410.
doi:10.1006/ecss.2000.0747

Richardson, L. F. 1922. Weather Prediction by Numerical Process. Cambridge University Press, Cambridge, 226 pp.

Rouse, H. 1937. Modern conceptions of the mechanics of fluid turbulence. Transactions of the American Society of Civil Engineers, 102, 463–541.

Smith, T. J. & Kirby, R. 1989. Generation, stabilization and dissipation of layered fine sediment suspensions. Journal of Coastal Research, 5, 63–73.

Toompuu, A., Heinloo, J. & Soomere, T. 1989. Modeling the Gibraltar salinity anomaly. Oceanology, 29, 698–702 [English edition, published by the American Geophysical Union in June 1990].

Toorman, E. A. & Berlamont, J. E. 1993. Mathematical modeling of cohesive sediment settling and consolidation. Observations on the entrainment of fluid mud by shear flow. In Nearshore and Estuarine Cohesive Sediment Transport, Coastal and Estuarine Studies, Vol. 42 (Mehta, A. J., ed.), pp. 167–184. AGU, Washington.

Võsumaa, Ü. & Heinloo, J. 1996. Evolution model of the vertical structure of the active layer of the sea. Journal of Geophysical Research, 101, C11, 25,635–25,646.

Wolanski, E., Asaeda, T. & Imberger, J. 1989. Mixing across a lutocline. Limnology and Oceanography, 34, 931–938.
doi:10.4319/lo.1989.34.5.0931

Yoon, J.-Y. & Kang, S.-K. 2005. A numerical model of sediment-laden turbulent flow in an open channel. Canadian Journal of Civil Engineering, 32, 233–240.
doi:10.1139/l04-089

Yu, D. & Tian, C. 2003. Vertical distribution of suspended sediment at the Yangtze river estuary. In Proceedings of the International Conference on Estuaries and Coasts, November 9–11, 2003, pp. 214–220. Hangzhou, China.
Back to Issue