ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Comparison of HIRLAM wind data with measurements at Estonian coastal meteorological stations; pp. 90–99
PDF | doi: 10.3176/earth.2010.1.07

Authors
Sirje Keevallik, Aarne Männik, Juhan Hinnov
Abstract
The possibilities of using High Resolution Limited Area Model (HIRLAM) version 6.4.0 outputs to describe wind parameters in the coastal zone of Estonia were investigated. For this purpose output from 3-dimensional variational (3DVAR) analysis and 24 h forecast files were compared with measurements at nine coastal sites during January and April–December 2007. Special attention was paid to moderate and strong winds (wind speed > 5 m/s) that are responsible for sea level changes and high wave heights in the coastal area. It is shown that HIRLAM overestimates the wind speed. This overestimation is stronger in cases where HIRLAM uses an inadequate land–sea fraction in the respective cells. The model describes the angular distribution of moderate and strong winds better than that of weak winds. Except for one station, approximately 90% of HIRLAM estimates of the direction of moderate and strong winds differ less than ± 22.5° from the measured values; in approximately 60% of cases the direction differs less than ± 10°. The HIRLAM system approximates best the winds at the westernmost stations on the Estonian islands and in Pärnu, whereas a 24 h forecast gives somewhat better results than the winds diagnosed from 3DVAR analysis
References

Ansper, I. & Fortelius, C. 2003. Verification of HIRLAM marine wind forecasts in the Baltic. Publicationes Instituti Geographici Universitatis Tartuensis, 93, 195–204.

Auria, A. C. & Navascues, B. 2006. Usage of SYNOP 10 meters wind observations in HIRLAM. HIRLAM Newsletter, 50, 8–17.

Cuxart, J., Bougeault, P. & Redelsberger, J. L. 2000. A turbulence scheme allowing for mesoscale and large-eddy simulations. Quarterly Journal of the Royal Meteorological Society, 126, 1–30.
doi:10.1002/qj.49712656202

Davies, H. C. 1976. A lateral boundary formulation for multi-level prediction models. Quarterly Journal of the Royal Meteorological Society, 102, 405–418.
doi:10.1256/smsqj.43209

Geleyn, J.-F. 1988. Interpolation of wind, temperature and humidity values from the model levels to the height of measurement. Tellus, 40A, 347–351.
doi:10.1111/j.1600-0870.1988.tb00352.x

Gustafsson, N., Berre, L., Hörnquist, S., Huang, X.-Y., Lindskog, M., Navascues, B., Mogensen, K. S. & Thorsteinsson, S. 2001. Three-dimensional variational data assimilation for a limited area model. Part I: General formulation and the background error constraint. Tellus, 53A, 425–446.

Keevallik, S., Soomere, T., Pärg, R. & Žukova, V. 2007. Outlook for wind measurement at Estonian automatic weather stations. Proceedings of the Estonian Academy of Sciences, Engineering, 13, 234–251.

Lindskog, M., Gustafsson, N., Navascues, B., Mogensen, K. S., Huang, X.-Y., Yang, X., Andræ, U., Berre, L., Thorsteinsson, S. & Rantakokko, J. 2001. Three-dimensional variational data assimilation for a limited area model. Part II: Observation handling and assimilation experiments. Tellus, 53A, 447–468.

Lynch, P., Giard, D. & Ivanovici, V. 1997. Improving the efficiency of a digital filtering scheme. Monthly Weather Review, 125, 1976–1982.
doi:10.1175/1520-0493(1997)125<1976:ITEOAD>2.0.CO;2

Mass, C. F., Ovens, D., Westrick, K. & Colle, B. A. 2002. Does increasing horizontal resolution produce more skilful forecasts? Bulletin of the American Meteorological Society, 83, 407–430.
doi:10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2

McDonald, A. & Haugen, J. E. 1992. A two-time-level, three-dimensional semi-Lagrangian semi-implicit, limited-area gridpoint model of the primitive equations. Monthly Weather Review, 120, 2603–2621.
doi:10.1175/1520-0493(1992)120<2603:ATTLTD>2.0.CO;2

Noilhan, J. & Mahfouf, J.-F. 1996. The ISBA land surface parameterization scheme. Global and Planetary Change, 13, 145–149.
doi:10.1016/0921-8181(95)00043-7

Noilhan, J. & Planton, S. 1989. A simple parameterization of land surface processes for meteorological models. Monthly Weather Review, 117, 536–549.
doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2

Sass, B. H. 2002. A research version of the STRACO cloud scheme. DMI Tech. Rep. 02-10, Danish Meteorological Institute, Copenhagen, Denmark [Available online at http://www.dmi.dk/dmi/index/viden/dmi-publikationer/ tekniskerapporter.htm].

Savijärvi, H. 1990. Fast radiation parameterization schemes for mesoscale and short-range forecast models. Journal of Applied Meteorology, 29, 437–447.
doi:10.1175/1520-0450(1990)029<0437:FRPSFM>2.0.CO;2

Soomere, T. 2003. Anisotropy of wind and wave regimes in the Baltic proper. Journal of Sea Research, 49, 305–316.
doi:10.1016/S1385-1101(03)00034-0

Soomere, T. 2005. Wind wave statistics in Tallinn Bay. Boreal Environment Research, 10, 103–118.

Soomere, T. & Keevallik, S. 2003. Directional and extreme wind properties in the Gulf of Finland. Proceedings of the Estonian Academy of Sciences, Engineering, 9, 73–90.

Soomere, T., Behrens, A., Tuomi, L. & Nielsen, J. W. 2008. Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Natural Hazards and Earth System Sciences, 8, 37–46.

Suursaar, Ü. & Kullas, T. 2006. Influence of wind climate changes on the mean sea level and current regime in the coastal waters of west Estonia, Baltic Sea. Oceanologia, 48, 361–383.

Suursaar, Ü., Kullas, T., Otsmann, M. & Kõuts, T. 2003. Extreme sea level events in the coastal waters of western Estonia. Journal of Sea Research, 49, 295–303.
doi:10.1016/S1385-1101(03)00022-4

Suursaar, Ü., Kullas, T., Otsmann, M., Saaremäe, I., Kuik, J. & Merilain, M. 2006. Cyclone Gudrun in January 2005 and modelling its hydrodynamic consequences in the Estonian coastal waters. Boreal Environment Research, 11, 143–159.

Tisler, P., Gregow, E., Niemelä, S. & Savijärvi, H. 2007. Wind field prediction in coastal zone: operational mesoscale model evaluation and simulations with increased horizontal resolution. Journal of Coastal Research, 23, 721–730.
doi:10.2112/05-0450.1
Back to Issue