ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Research article
Geochemistry of marine black shale of the Cambrian Qiongzhusi Formation, Yangtze Plate, SW China: implications for provenance and paleoweathering; pp. 261–282
PDF | https://doi.org/10.3176/oil.2023.4.01

Authors
Zexin Fang, Ling Guo, Jianni Liu
Abstract

Marine black shale in the Lower Cambrian Qiongzhusi (QZS) Formation in the southwestern Yangtze Plate, SW China, is the key target for shale gas development. The paleoenvironment plays an important role in the formation of organic-rich shale. Based on the analysis of major, trace and rare earth elements (REE), the authors discussed element composition, paleoweathering and provenance of Qiongzhusi black shale (QZS shale). The results show that the main components of the Qiongzhusi Formation sample are SiO2, Al2O3 and total Fe2O3 (TFe2O3), with the average values of 64.08 wt%, 15.00 wt% and 5.39 wt%, respectively. Redox-sensitive elements, such as V, Cr, Ni, Zn and U, are richer in QZS shale compared to the upper continental crust (UCC). The total concentration of REE (∑REE) of QZS shale is 174.58 ppm on average, which is higher than that of UCC (average 146.37 ppm) and the North American Shale Composite (NASC) (average 173.21 ppm). The ratios of w(SiO2)/w(Al2O3) and w(Al2O3)/w(TiO2), the Zr-TiO2 diagram, the Th/Sc vs Zr/Sc plot, the discriminant function of F1 vs F2 and F3 vs F4, as well as the discrimination diagram of ∑REE vs La/Yb indicated that the main provenances of QZS shale are sedimentary and felsic igneous rocks. The values of a chemical weathering index, the chemical index of alteration (CIA), of the Lower QZS Formation (Stage 1) range from 51.84 to 64.33, indicating a low degree of chemical weathering and a cold and dry climate. The CIA values of the Upper QZS Formation (Stage 2) range from 66.58 to 82.42, being indicative of a medium degree of chemical weathering, probably in a humid climate.

References

1. Cloud, Jr, P. E. Some problems and patterns of evolution exemplified by fossil invertebrates. Evolution, 1948, 2(4), 322‒350.
https://doi.org/10.1111/j.1558-5646.1948.tb02750.x

2.Butterfield, N. J. Macroevolutionary turnover through the Ediacaran transition: ecological and biogeochemical implications. Geol. Soc., London, Spec. Publ., 2009, 326(1), 55‒66.
https://doi.org/10.1144/SP326.3

3. Shu, D., Isozaki, Y., Zhang, X., Han, J., Maruyama, S. Birth and early evolution of metazoans. Gondwana Res., 2014, 25(3), 884‒895.
https://doi.org/10.1016/j.gr.2013.09.001

4. Cawood, P. A., Wang, Y., Xu, Y., Zhao, G. Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere? Geology, 2013, 41(8), 903‒906.
https://doi.org/10.1130/G34395.1

5. Jin, C., Li, C., Algeo, T. J., Wu, S., Cheng, M., Zhang, Z., Shi, W. Controls on organic matter accumulation on the early-Cambrian western Yangtze Platform, South China. Mar. Petrol. Geol., 2020, 111, 75‒87.
https://doi.org/10.1016/j.marpetgeo.2019.08.005

6. Maloof, A. C., Ramezani, J., Bowring, S. A., Fike, D. A., Porter, S. M., Mazouad, M. Constraints on early Cambrian carbon cycling from the duration of the Nemakit-Daldynian–Tommotian boundary δ13C shift, Morocco. Geology, 2010, 38(7), 623‒626.
https://doi.org/10.1130/G30726.1

7. Cremonese, L., Shields-Zhou, G., Struck, U., Ling, H.-F., Och, L., Chen, X., Li, D. Marine biogeochemical cycling during the early Cambrian constrained by a nitrogen and organic carbon isotope study of the Xiaotan section, South China. Precambrian Res., 2013, 225, 148‒165.
https://doi.org/10.1016/j.precamres.2011.12.004

8. Jin, C., Li, C., Algeo, T. J., Planavsky, N. J., Cui, H., Yang, X., Zhao, Y., Zhang, X., Xie, S. A highly redox-heterogeneous ocean in South China during the early Cambrian (~ 529–514 Ma): Implications for biota-environment co-evolution. Earth Planet. Sci. Lett., 2016, 441, 38‒51.
https://doi.org/10.1016/j.epsl.2016.02.019

9. Xiao, X. M., Wei, Q., Gai, H. F., Li, T. F., Wang, M. L., Pan, L., Chen, J., Tian, H. Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in south China. Petrol. Sci., 2015, 12(4), 573‒586.
https://doi.org/10.1007/s12182-015-0057-2

10. Zhu, M. Y., Sun, Z. X., Yang, A. H., Yuan, J. L., Li, G. X., Zhou, Z. Q., Zhang, J. M. Lithostratigraphic subdivision and correlation of the Cambrian in China. Journal of Stratigraphy, 2021, 45(3), 223‒249 (in Chinese).

11. Ketris, M. P., Yudovich, Ya. E. Estimations of clarkes for carbonaceous biolithes: world average for trace element contents in black shales and coals. Int. J. Coal Geol., 2009, 78(2), 135–148.
https://doi.org/10.1016/j.coal.2009.01.002

12. Song, Y., Li, S., Hu, S. Warm-humid paleoclimate control of salinized lacustrine organic-rich shale deposition in the Oligocene Hetaoyuan Formation of the Biyang Depression, East China. Int. J. Coal Geol., 2019, 202, 69–84.
https://doi.org/10.1016/j.coal.2018.11.016

13. Algeo, T. J., Liu, J. S. A re-assessment of elemental proxies for paleoredox analysis. Chem. Geol., 2020, 540, 119549.
https://doi.org/10.1016/j.chemgeo.2020.119549

14. Li, D., Chen, Y., Wang, Z., Lin, Y., Zhou, J. Paleozoic sedimentary record of the Xing-Meng Orogenic Belt, Inner Mongolia: Implications for the provenances and tectonic evolution of the Central Asian Orogenic Belt. Chinese Sci. Bull., 2012, 57(7), 776‒785.
https://doi.org/10.1007/s11434-011-4867-3

15. Mondal, M. E. A., Wani, H., Mondal, B. Geochemical signature of provenance, tectonics and chemical weathering in the Quaternary flood plain sediments of the Hindon River, Gangetic plain, India. Tectonophysics, 2012, 566−567, 87−94.
https://doi.org/10.1016/j.tecto.2012.07.001

16. Nesbitt, H. W., Young, G. M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982, 299(5885), 715‒717.
https://doi.org/10.1038/299715a0

17. Fedo, C. M., Nesbitt, H. W., Young, G. M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 1995, 23(10), 921‒924.
https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

18. Raza, M., Ahmad, A. H. M., Shamim Khan, M., Khan, F. Geochemistry and detrital modes of Proterozoic sedimentary rocks, Bayana Basin, north Delhi fold belt: implications for provenance and source-area weathering. Int. Geol. Rev., 2012, 54(1), 111‒129.
https://doi.org/10.1080/00206814.2010.517044

19. Zhang, D. Y. Geochemical Characteristics of the Heiyi Rock Series in the Lower Cambrian Qiongzhusi Formation in the Huize Area of Northeastern Yunnan. Master’s Thesis. KunMing University of Science and Technology, China, 2017 (in Chinese).
https://doi.org/10.1088/1755-1315/546/3/032055

20. Cheng, Y., Hu, Y. Z., Li, P. Y., Lu, P. The geochemical characteristics of trace elements and paleoenvironmental evolution of black rock series in the lower Cambrian Qiongzhusi Formation from Huize area, eastern Yunnan province. Contributions to Geology and Mineral Resources Research, 2019, 34(3), 416‒422 (in Chinese).

21. Fang, Z. X. Sedimentary Environment and Source Rock Characteristics of Black Shale in the Lower Cambrian Qiongzhusi Formation, Eastern Yunnan. Master’s Thesis. Northwest University, China, 2020 (in Chinese).

22. Cheng, Y., Jian, L., Tang, G., Zhang, C. Trace Element Anomaly Characteristics and Metallogenic Significance of the Lower Cambrian Qiongzhusi Formation from Huize Area, Eastern Yunnan Province. Nonferrous Metals Engineering, 2020, 10(12), 90–98 (in Chinese).

23. Li, J. H., Wang, H. H., Li, W. B., Zhou, X. B. Discussion on global tectonics evolution from plate reconstruction in Phanerozoic. Acta Petrolei Sinica, 2014, 35(2), 207‒218 (in Chinese).

24. Liu, Y., Liu, X. M., Hu, Z. C., Diwu, C. R., Yuan, H. L., Gao, S. Evaluation of accuracy and long-term stability of determination of 37 trace elements in geological samples by ICP-MS. Acta Petrologica. Sinica, 2007, 23(5), 1203‒1210 (in Chinese).

25. Zou, C. N., Du, J. H., Xu, C. C., Wang, Z. C., Zhang, B. M., Wei, G. Q., Wang, T. S., Yao, G. S., Deng, S. H., Liu, J. J., Zhou, H., Xu, A. N., Yang, Z., Jiang, H., Gu, Z. D. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China. Petroleum Exploration and Development, 2014, 41(3), 278–293 (in Chinese).
https://doi.org/10.1016/S1876-3804(14)60036-7

26. Yang, Y., Wen, L., Xie, J. R., Luo, B., Huang, P. H., Ran, Q., Zhou, G., Zhang, X. H., Wang, H., Tian, X. W., Zhang, Y., Chen, C. Progress and direction of marine carbonate gas exploration in Sichuan Basin. China Petroleum Exploration, 2020, 25(3), 44–55 (in Chinese).

27. Taylor, S. R., McLennan, S. M. The Continental Crust: Its Composition and Evolution: an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Science Press, Beijing, 1985.

28. Haskin, L. A., Haskin, M. A., Frey, F. A., Wildeman, T. R. Relative and absolute terrestrial abundances of the rare earths. In: Origin and Distribution of the Elements (Ahrens, L. H., ed.), International Series of Monographs in Earth Sciences, 1968, 889‒912.
https://doi.org/10.1016/B978-0-08-012835-1.50074-X

29. Fu, X., Wang, J., Zeng, Y., Tan, F., Feng, X. Trace elements in marine oil shale from the Changshe Mountain area, northern Tibet, China. Energ. Source. Part A, 2012, 34(24), 2296‒2306.
https://doi.org/10.1080/15567036.2010.499418

30. Patterson, J. H., Ramsden, A. R., Dale, L. S., Fardy, J. J. Geochemistry and mineralogical residences of trace elements in oil shales from Julia Creek, Queensland, Australia. Chem. Geol., 1986, 55(1‒2), 1‒16.
https://doi.org/10.1016/0009-2541(86)90123-3

31. Garver, J. I., Royce, P. R., Smick, T. A. Chromium and nickel in shale of the Taconic foreland; a case study for the provenance of fine-grained sediments with an ultramafic source. J. Sediment. Res., 1996, 66(1), 100‒106.
https://doi.org/10.1306/D42682C5-2B26-11D7-8648000102C1865D

32. Paikaray, S., Banerjee, S., Mukherji, S. Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonics and paleoweathering. J. Asian Earth Sci., 2008, 32(1), 34‒48.
https://doi.org/10.1016/j.jseaes.2007.10.002

33. Floyd, P. A., Leveridge, B. E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc., 1987, 144(4), 531‒542.
https://doi.org/10.1144/gsjgs.144.4.0531

34. Ghosh, P., Bhattacharya, S. K., Dayal, A. M., Trivedi, J. R., Ebihara, M., Sarin, M. M., Chakrabarti, A. Trace element and isotopic studies of Permo-Carboniferous carbonate nodules from Talchir sediments of peninsular India: Environmental and provenance implications. P. Indian AS - Earth, 2002, 111(2), 87‒93.
https://doi.org/10.1007/BF02981137

35. Bhatia, M. R., Crook, K. A. W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. to Mineral. Petrol., 1986, 92(2), 181‒193.
https://doi.org/10.1007/BF00375292

36. Zhang, K. J. A Mediterranean-style model for early Neoproterozoic amalga-mation of South China. J. Geodyn., 2017, 105, 1‒10.
https://doi.org/10.1016/j.jog.2017.01.002

37. Kaufman, A. J., Jacobsen, S. B., Knoll, A. H. The vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth Planet. Sci. Lett., 1993, 120(3‒4), 409‒430.
https://doi.org/10.1016/0012-821X(93)90254-7

38. Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., Kaufman, A. J. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 1995, 270(5236), 598‒604.
https://doi.org/10.1126/science.270.5236.598

39. Knoll, A. H., Carroll, S. B. Early animal evolution: Emerging views from comparative biology and geology. Science, 1999, 284(5423), 2129‒2137.
https://doi.org/10.1126/science.284.5423.2129

40. Hayashi, K. I., Fujisawa, H., Holland, H. D., Ohmoto, H. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta, 1997, 61(19), 4115‒4137.
https://doi.org/10.1016/S0016-7037(97)00214-7

41. McLennan, S. M., Hemming, S., McDaniel, D. K., Hanson, G. N. Geochemical approaches to sedimentation, provenance, and tectonics. In: Processes Controlling the Composition of Clastic Sediments (Johnsson, M. J., Basu, A., eds.), Geol. Soc. Am. Spec. Pap., 1993, 284, 21‒40.
https://doi.org/10.1130/SPE284-p21

42. Roser, B. P., Korsch, R. J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem. Geol., 1988, 67(1–2), 119‒139.
https://doi.org/10.1016/0009-2541(88)90010-1

43. Allègre, C. J., Minster, J. F. Quantitative models of trace element behavior in magmatic processes. Earth Planet. Sci. Lett., 1978, 38(1), 1‒25.
https://doi.org/10.1016/0012-821X(78)90123-1

44. Fan, H., Wen, H., Zhu, X. Marine redox conditions in the Early Cambrian ocean: Insights from the Lower Cambrian phosphorite deposits, South China. J. Earth Sci., 2016, 27(2), 282‒296.
https://doi.org/10.1007/s12583-016-0687-3

45. Gao, P., Liu, G., Jia, C., Young, A., Wang, Z., Wang, T., Zhang, P., Wang, D. Redox variations and organic matter accumulation on the Yangtze carbonate platform during Late Ediacaran–Early Cambrian: Constraints from petrology and geochemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol., 2016, 450, 91‒110.
https://doi.org/10.1016/j.palaeo.2016.02.058

46. Guo, Q., Deng, Y., Hippler, D., Franz, G., Zhang, J. REE and trace element patterns from organic-rich rocks of the Ediacaran-Cambrian transitional interval. Gondwana Res., 2016, 36(1), 94‒106.
https://doi.org/10.1016/j.gr.2016.03.012

47. Harnois, L. The CIW index: a new chemical index of weathering. Sediment. Geol., 1988, 55(3‒4), 319‒322.
https://doi.org/10.1016/0037-0738(88)90137-6

48. Xu, Z., Lu, H., Zhao, C., Wang, X., Su, Z., Wang, Z., Liu, H., Wang, L., Lu, Q. Composition, origin and weathering process of surface sediment in Kumtagh Desert, Northwest China. J. Geogr. Sci., 2011, 21(6), 1062‒1076.
https://doi.org/10.1007/s11442-011-0900-3

49. Tobia, F. H., Mustafa, B. H. Geochemistry and mineralogy of the Al-rich shale from Baluti formation, Iraqi Kurdistan region: implications for weathering and provenance. Arab. J. Geosci., 2016, 9(20), 757.
https://doi.org/10.1007/s12517-016-2762-6

50. Guo, L., Jia, C. C., Du, W. Geochemistry of Lower Silurian shale of Longmaxi Formation, southeastern Sichuan Basin, China: Implications for provenance and source weathering. J. Cent. South Univ., 2016, 23(3), 669‒676.
https://doi.org/10.1007/s11771-016-3112-2

51. Deng, T., Li, Y., Wang, Z., Yu, Q., Dong, S., Yan, L., Hu, W., Chen, B. Geochemical characteristics and organic matter enrichment mechanism of black shale in the Upper Triassic Xujiahe Formation in the Sichuan basin: Implications for paleoweathering, provenance and tectonic setting. Mar. Petrol. Geol., 2019, 109, 698‒716.
https://doi.org/10.1016/j.marpetgeo.2019.06.057

52. Liu, S., Liu, B., Tang, S., Zhao, C., Tan, F., Xi, Z., Du, F. Palaeoenvironmental and tectonic controls on organic matter enrichment in the Middle Jurassic Dameigou Formation (Qaidam Basin, North China). Palaeogeogr. Palaeoclimatol. Palaeoecol., 2022, 585, 110747.
https://doi.org/10.1016/j.palaeo.2021.110747

53. Liu, H., Wang, C., Li, Y., Deng, J., Deng, B., Feng, Y., Chen, H., Xu, Y., Zhao, S. Geochemistry of the black rock series of lower Cambrian Qiongzhusi Formation, SW Yangtze Block, China: Reconstruction of sedimentary and tectonic environments. Open Geosci., 2021, 13(1), 166‒187.
https://doi.org/10.1515/geo-2020-0228

54. Bai, Y., Liu, Z., Sun, P., Liu, R., Hu, X., Zhao, H., Xu, Y. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, Northeast China. J. Asian Earth Sci., 2015, 97, Part A, 89‒101.
https://doi.org/10.1016/j.jseaes.2014.10.008

55. Bai, Y., Lv, Q., Liu, Z., Sun, P., Xu, Y., Meng, J., Meng, Q., Xie, W., Wang, J., Wang, K. Major, trace and rare earth element geochemistry of coal and oil shale in the Yuqia area, Middle Jurassic Shimengou Formation, northern Qaidam Basin. Oil Shale, 2020, 37(1), 1‒31.
https://doi.org/10.3176/oil.2020.1.01

56. Dai, X., Du, Y., Ziegler, M., Wang, C., Ma, Q., Chai, R., Guo, H. Middle Triassic to Late Jurassic climate change on the northern margin of the South China Plate: Insights from chemical weathering indices and clay mineralogy. Palaeogeogr. Palaeoclimatol. Palaeoecol., 2022, 585, 110744.
https://doi.org/10.1016/j.palaeo.2021.110744

57. Ofili, S., Soesoo, A. General geology and geochemistry of the Lokpanta Formation oil shale, Nigeria. Oil Shale, 2021, 38(1), 1‒25.
https://doi.org/10.3176/oil.2021.1.01

58. Ofili, S., Soesoo, A., Panova, E. G., Hints, R., Hade, S., Ainsaar, L. Geochemical reconstruction of the provenance, tectonic setting and paleoweathering of Lower Paleozoic black shales from Northern Europe. Minerals, 2022, 12(5), 602.
https://doi.org/10.3390/min12050602

59. McLennan, S. M. Weathering and global denudation. J. Geol., 1993, 101(2), 295‒303.
https://doi.org/10.1086/648222

Back to Issue