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Main theorems in [l] have been formulated by means of the matrix INIB. But

the definition of VIB is not correct there. By this definition Lemma G (hereby also

Theorems 1 and 2) are true only for the space sty(A) of sequences which converge

A-statistically to zero.

Theorem F shows that all arguments and results of [l] remain true if we define

INMB as a submatrix ofB in the following way. For an infinite matrix B = (b,;;) and

anindex set N = {n,}, let VB be the matrix (d;), where

dik = bn,.k (k=1,2,...)

f0ra11i=1,2,....
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